Displaying 41 – 60 of 94

Showing per page

On some problem of A. Rosłanowski

Szymon Plewik (1996)

Colloquium Mathematicae

We present a negative answer to problem 3.7(b) posed on page 193 of [2], where, in fact, A. Rosłanowski asked: Does every set of Lebesgue measure zero belong to some Mycielski ideal?

On the best choice of a damping sequence in iterative optimization methods.

Leonid N. Vaserstein (1988)

Publicacions Matemàtiques

Some iterative methods of mathematical programming use a damping sequence {αt} such that 0 ≤ αt ≤ 1 for all t, αt → 0 as t → ∞, and Σ αt = ∞. For example, αt = 1/(t+1) in Brown's method for solving matrix games. In this paper, for a model class of iterative methods, the convergence rate for any damping sequence {αt} depending only on time t is computed. The computation is used to find the best damping sequence.

On the complexity of problems on simple games

Josep Freixas, Xavier Molinero, Martin Olsen, Maria Serna (2011)

RAIRO - Operations Research - Recherche Opérationnelle

Simple games cover voting systems in which a single alternative, such as a bill or an amendment, is pitted against the status quo. A simple game or a yes-no voting system is a set of rules that specifies exactly which collections of “yea” votes yield passage of the issue at hand. Each of these collections of “yea” voters forms a winning coalition. We are interested in performing a complexity analysis on problems defined on such families of games. This analysis as usual depends on the game representation...

On the complexity of problems on simple games

Josep Freixas, Xavier Molinero, Martin Olsen, Maria Serna (2012)

RAIRO - Operations Research

Simple games cover voting systems in which a single alternative, such as a bill or an amendment, is pitted against the status quo. A simple game or a yes-no voting system is a set of rules that specifies exactly which collections of “yea” votes yield passage of the issue at hand. Each of these collections of “yea” voters forms a winning coalition. We are interested in performing a complexity analysis on problems defined on such families of games....

On the complexity of the Shapley-Scarf economy with several types of goods

Katarína Cechlárová (2009)

Kybernetika

In the Shapley-Scarf economy each agent is endowed with one unit of an indivisible good (house) and wants to exchange it for another, possibly the most preferred one among the houses in the market. In this economy, core is always nonempty and a core allocation can be found by the famous Top Trading Cycles algorithm. Recently, a modification of this economy, containing Q >= 2 types of goods (say, houses and cars for Q=2) has been introduced. We show that if the number of agents is 2, a complete...

Currently displaying 41 – 60 of 94