Displaying 141 – 160 of 714

Showing per page

Combinatorics of Dyadic Intervals: Consistent Colourings

Anna Kamont, Paul F. X. Müller (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

We study the problem of consistent and homogeneous colourings for increasing families of dyadic intervals. We determine when this problem can be solved and when it cannot.

Combinatorics of open covers (III): games, Cp (X)

Marion Scheepers (1997)

Fundamenta Mathematicae

Some of the covering properties of spaces as defined in Parts I and II are here characterized by games. These results, applied to function spaces C p ( X ) of countable tightness, give new characterizations of countable fan tightness and countable strong fan tightness. In particular, each of these properties is characterized by a Ramseyan theorem.

Combinatorics of open covers (VII): Groupability

Ljubiša D. R. Kočinac, Marion Scheepers (2003)

Fundamenta Mathematicae

We use Ramseyan partition relations to characterize: ∙ the classical covering property of Hurewicz; ∙ the covering property of Gerlits and Nagy; ∙ the combinatorial cardinal numbers and add(ℳ ). Let X be a T 31 / 2 -space. In [9] we showed that C p ( X ) has countable strong fan tightness as well as the Reznichenko property if, and only if, all finite powers of X have the Gerlits-Nagy covering property. Now we show that the following are equivalent: 1. C p ( X ) has countable fan tightness and the Reznichenko property. 2....

Complementarities and the existence of strong Berge equilibrium

Kerim Keskin, H. Çağrı Sağlam (2014)

RAIRO - Operations Research - Recherche Opérationnelle

This paper studies the existence and the order structure of strong Berge equilibrium, a refinement of Nash equilibrium, for games with strategic complementarities à la strong Berge. It is shown that the equilibrium set is a nonempty complete lattice. Moreover, we provide a monotone comparative statics result such that the greatest and the lowest equilibria are increasing.

Computing the Stackelberg/Nash equilibria using the extraproximal method: Convergence analysis and implementation details for Markov chains games

Kristal K. Trejo, Julio B. Clempner, Alexander S. Poznyak (2015)

International Journal of Applied Mathematics and Computer Science

In this paper we present the extraproximal method for computing the Stackelberg/Nash equilibria in a class of ergodic controlled finite Markov chains games. We exemplify the original game formulation in terms of coupled nonlinear programming problems implementing the Lagrange principle. In addition, Tikhonov's regularization method is employed to ensure the convergence of the cost-functions to a Stackelberg/Nash equilibrium point. Then, we transform the problem into a system of equations in the...

Control of a team of mobile robots based on non-cooperative equilibria with partial coordination

Krzysztof Skrzypczyk (2005)

International Journal of Applied Mathematics and Computer Science

In this work we present an application of the concept of non-cooperative game equilibria to the design of a collision free movement of a team of mobile robots in a dynamic environment. We propose the solution to the problem of feasible control synthesis, based on a partially centralized sensory system. The control strategy based on the concept of non-cooperative game equilibria is well known in the literature. It is highly efficient through phases where the solution is unique. However, even in simple...

Convergence method, properties and computational complexity for Lyapunov games

Julio B. Clempner, Alexander S. Poznyak (2011)

International Journal of Applied Mathematics and Computer Science

We introduce the concept of a Lyapunov game as a subclass of strictly dominated games and potential games. The advantage of this approach is that every ergodic system (repeated game) can be represented by a Lyapunov-like function. A direct acyclic graph is associated with a game. The graph structure represents the dependencies existing between the strategy profiles. By definition, a Lyapunov-like function monotonically decreases and converges to a single Lyapunov equilibrium point identified by...

Convex interval games.

Gök, S.Z.Alparslan, Branzei, R., Tijs, S. (2009)

Journal of Applied Mathematics and Decision Sciences

Convexity of production, common pool and oligopoly games: a survey

Theo S. H. Driessen, Holger Meinhardt (2006)

Banach Center Publications

The paper surveys a uniform proof technique of the convexity property for three different cooperative TU games arising from three different economical settings. The production economy, common pool situation and oligopoly framework involve a cost function, but different production functions. Each of the three corresponding game theoretic models refers to some maximization problem described by optimizing a certain net profit function over all feasible production levels. The current mathematical proof...

Currently displaying 141 – 160 of 714