The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 41 – 60 of 142

Showing per page

Finiteness Theorems for Deformations of Complexes

Frauke M. Bleher, Ted Chinburg (2013)

Annales de l’institut Fourier

We consider deformations of bounded complexes of modules for a profinite group G over a field of positive characteristic. We prove a finiteness theorem which provides some sufficient conditions for the versal deformation of such a complex to be represented by a complex of G -modules that is strictly perfect over the associated versal deformation ring.

Formes compagnons et complexe BGG dual pour G S p 4

J. Tilouine (2012)

Annales de l’institut Fourier

On montre, sous certaines hypothèses un résultat en direction de la conjecture de Serre pour G S p 4 formulée dans un autre article avec F. Herzig : si la représentation résiduelle associée à une forme de Siegel de genre 2 , de niveau premier à p , p -ordinaire de poids p -petit, laisse stables deux droites (au lieu d’une) dans un plan lagrangien, alors cette forme possède une forme compagnon de poids prescrit. Notre méthode consiste à traduire, grâce au théorème de comparaison mod. p de Faltings, l’existence...

Functoriality and the Inverse Galois problem II: groups of type B n and G 2

Chandrashekhar Khare, Michael Larsen, Gordan Savin (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

This paper contains an application of Langlands’ functoriality principle to the following classical problem: which finite groups, in particular which simple groups appear as Galois groups over ? Let be a prime and t a positive integer. We show that that the finite simple groups of Lie type B n ( k ) = 3 D S O 2 n + 1 ( 𝔽 k ) d e r if 3 , 5 ( mod 8 ) and G 2 ( k ) appear as Galois groups over , for some k divisible by t . In particular, for each of the two Lie types and fixed we construct infinitely many Galois groups but we do not have a precise control...

Galois representations, embedding problems and modular forms.

Teresa Crespo (1997)

Collectanea Mathematica

To an odd irreducible 2-dimensional complex linear representation of the absolute Galois group of the field Q of rational numbers, a modular form of weight 1 is associated (modulo Artin's conjecture on the L-series of the representation in the icosahedral case). In addition, linear liftings of 2-dimensional projective Galois representations are related to solutions of certain Galois embedding problems. In this paper we present some recent results on the existence of liftings of projective representations...

Hodge-Tate and de Rham representations in the imperfect residue field case

Kazuma Morita (2010)

Annales scientifiques de l'École Normale Supérieure

Let K be a p -adic local field with residue field k such that [ k : k p ] = p e < + and V be a p -adic representation of Gal ( K ¯ / K ) . Then, by using the theory of p -adic differential modules, we show that V is a Hodge-Tate (resp. de Rham) representation of Gal ( K ¯ / K ) if and only if V is a Hodge-Tate (resp. de Rham) representation of Gal ( K pf ¯ / K pf ) where K pf / K is a certain p -adic local field with residue field the smallest perfect field k pf containing k .

Inductivity of the global root number

David E. Rohrlich (2013)

Acta Arithmetica

Under suitable hypotheses, we verify that the global root number of a motivic L-function is inductive (invariant under induction).

Currently displaying 41 – 60 of 142