Powers of a rational number modulo 1 cannot lie in a small interval
Let and are conjugate complex algebraic integers which generate Lucas or Lehmer sequences. We present an algorithm to search for elements of such sequences which have no primitive divisors. We use this algorithm to prove that for all and with h, the -th element of these sequences has a primitive divisor for . In the course of proving this result, we give an improvement of a result of Stewart concerning more general sequences.
For any positive integer let denote the set of numbers with all partial quotients (except possibly the first) not exceeding . In this paper we characterize most products and quotients of sets of the form .
Ce texte montre qu’en combinant le théorème fort des six exponentielles de D.Roy et la conjugaison complexe, on peut obtenir un certain nombre de cas particuliers de la conjecture forte des quatre exponentielles.
On étudie certaines propriétés arithmétiques de fonctions analytique au voisinage de où et satisfaisant une équation fonctionnelle de Poincaré.