Displaying 1141 – 1160 of 1538

Showing per page

Solutions entières de l’équation Y m = f ( X )

Dimitrios Poulakis (1991)

Journal de théorie des nombres de Bordeaux

Soit K un corps de nombres. Dans ce travail nous calculons des majorants effectifs pour la taille des solutions en entiers algébriques de K des équations, Y 2 = f ( X ) , où f ( X ) K [ X ] a au moins trois racines d’ordre impair, et Y m = f ( X ) m 3 et f ( X ) K [ X ] a au moins deux racines d’ordre premier à m . On améliore ainsi les estimations connues ([2],[9]) pour les solutions de ces équations en entiers algébriques de K .

Some algebraic and homological properties of Lipschitz algebras and their second duals

F. Abtahi, E. Byabani, A. Rejali (2019)

Archivum Mathematicum

Let ( X , d ) be a metric space and α > 0 . We study homological properties and different types of amenability of Lipschitz algebras Lip α X and their second duals. Precisely, we first provide some basic properties of Lipschitz algebras, which are important for metric geometry to know how metric properties are reflected in simple properties of Lipschitz functions. Then we show that all of these properties are equivalent to either uniform discreteness or finiteness of X . Finally, some results concerning the character...

Currently displaying 1141 – 1160 of 1538