Displaying 381 – 400 of 453

Showing per page

The Cohen-Lenstra heuristics, moments and p j -ranks of some groups

Christophe Delaunay, Frédéric Jouhet (2014)

Acta Arithmetica

This article deals with the coherence of the model given by the Cohen-Lenstra heuristic philosophy for class groups and also for their generalizations to Tate-Shafarevich groups. More precisely, our first goal is to extend a previous result due to É. Fouvry and J. Klüners which proves that a conjecture provided by the Cohen-Lenstra philosophy implies another such conjecture. As a consequence of our work, we can deduce, for example, a conjecture for the probability laws of p j -ranks of Selmer groups...

The distribution of second p -class groups on coclass graphs

Daniel C. Mayer (2013)

Journal de Théorie des Nombres de Bordeaux

General concepts and strategies are developed for identifying the isomorphism type of the second p -class group G = Gal ( F p 2 ( K ) | K ) , that is the Galois group of the second Hilbert p -class field F p 2 ( K ) , of a number field K , for a prime p . The isomorphism type determines the position of G on one of the coclass graphs 𝒢 ( p , r ) , r 0 , in the sense of Eick, Leedham-Green, and Newman. It is shown that, for special types of the base field K and of its p -class group Cl p ( K ) , the position of G is restricted to certain admissible branches of coclass...

The imaginary abelian number fields with class numbers equal to their genus class numbers

Ku-Young Chang, Soun-Hi Kwon (2000)

Journal de théorie des nombres de Bordeaux

We know that there exist only finitely many imaginary abelian number fields with class numbers equal to their genus class numbers. Such non-quadratic cyclic number fields are completely determined in [Lou2,4] and [CK]. In this paper we determine all non-cyclic abelian number fields with class numbers equal to their genus class numbers, thus the one class in each genus problem is solved, except for the imaginary quadratic number fields.

Currently displaying 381 – 400 of 453