Consecutive powers in continued fractions
In this paper we study an action of the absolute Galois group on bicolored plane trees. In distinction with the similar action provided by the Grothendieck theory of “Dessins d’enfants” the action is induced by the action of on equivalence classes of conservative polynomials which are the simplest examples of postcritically finite rational functions. We establish some basic properties of the action and compare it with the Grothendieck action.
Dans son article de 1971, essentiellement consacré aux extensions quaternioniennes de degré , J. Martinet prouve, au passage, l’existence de bases normales pour les entiers des extensions modérément ramifiées de de groupe . On en donne une construction en reprenant les méthodes de sa thèse.
On donne une caractérisation simple pour l’existence des bases normales pour les extensions modérément ramifiées à groupe de Galois quaternionien d’ordre . La preuve conduit à un algorithme que l’on illustre par un exemple.
Nous construisons, dans les corps quadratiques réels, une infinité de fractions continues périodiques uniformément bornées, avec une borne qui semble meilleure que celle connue jusqu’ici. Nous faisons cela en partant de développements en fractions continues de la même forme que ceux des réels . Et ceci nous permet d’obtenir de plus qu’il existe une infinité de corps quadratiques contenant une infinité de développements en fractions continues périodiques formées seulement des entiers et . Nous...
From complex multiplication we know that elliptic units are contained in certain ray class fields over a quadratic imaginary number field , and Ramachandra [3] has shown that these ray class fields can even be generated by elliptic units. However the generators constructed by Ramachandra involve very complicated products of high powers of singular values of the Klein form defined below and singular values of the discriminant . It is the aim of this paper to show, that in many cases a generator...
Le but de cet article est de présenter une nouvelle méthode purement adélique pour réaliser le principe de fonctorialité de Langlands dans le cas de l’induction automorphe sans ramification de GL à GL sur les corps de fonctions. On construit sur le produit des groupes adéliques GL et GL un noyau de la fonctorialité. C’est une version “en famille” et locale de la construction par les modèles de Whittaker globaux, utilisée classiquement dans les “théorèmes réciproques” de Weil et Piatetski-Shapiro....
Soit une extension algébrique du corps des nombres rationnels, galoisienne et de degré premier . Si désignent des éléments primitifs conjugués de , on note , , leurs résolvantes de Lagrange. Les nombres sont des éléments primitifs conjugués du corps des racines -ièmes de l’unité.La première partie est consacrée à la caractérisation de ces , on en déduit une paramétrisation des polynômes abéliens de degré . On s’intéresse ensuite aux associés à des éléments entiers, ce qui permet...