Displaying 121 – 140 of 267

Showing per page

The integral logarithm in Iwasawa theory : an exercise

Jürgen Ritter, Alfred Weiss (2010)

Journal de Théorie des Nombres de Bordeaux

Let l be an odd prime number and H a finite abelian l -group. We describe the unit group of Λ [ H ] (the completion of the localization at l of l [ [ T ] ] [ H ] ) as well as the kernel and cokernel of the integral logarithm L : Λ [ H ] × Λ [ H ] , which appears in non-commutative Iwasawa theory.

The Iwasawa λ-invariants of ℤₚ-extensions of real quadratic fields

Takashi Fukuda, Hisao Taya (1995)

Acta Arithmetica

1. Introduction. Let k be a totally real number field. Let p be a fixed prime number and ℤₚ the ring of all p-adic integers. We denote by λ=λₚ(k), μ=μₚ(k) and ν=νₚ(k) the Iwasawa invariants of the cyclotomic ℤₚ-extension k of k for p (cf. [10]). Then Greenberg’s conjecture states that both λₚ(k) and μₚ(k) always vanish (cf. [8]). In other words, the order of the p-primary part of the ideal class group of kₙ remains bounded as n tends to infinity, where kₙ is the nth layer of k / k . We know by the Ferrero-Washington...

The Lehmer constants of an annulus

Artūras Dubickas, Chris J. Smyth (2001)

Journal de théorie des nombres de Bordeaux

Let M ( α ) be the Mahler measure of an algebraic number α , and V be an open subset of . Then its Lehmer constant L ( V ) is inf M ( α ) 1 / deg ( α ) , the infimum being over all non-zero non-cyclotomic α lying with its conjugates outside V . We evaluate L ( V ) when V is any annulus centered at 0 . We do the same for a variant of L ( V ) , which we call the transfinite Lehmer constant L ( V ) .Also, we prove the converse to Langevin’s Theorem, which states that L ( V ) > 1 if V contains a point of modulus 1 . We prove the corresponding result for L ( V ) .

The lifted root number conjecture for fields of prime degree over the rationals: an approach via trees and Euler systems

Cornelius Greither, Radiu Kučera (2002)

Annales de l’institut Fourier

The so-called Lifted Root Number Conjecture is a strengthening of Chinburg’s Ω ( 3 ) - conjecture for Galois extensions K / F of number fields. It is certainly more difficult than the Ω ( 3 ) -localization. Following the lead of Ritter and Weiss, we prove the Lifted Root Number Conjecture for the case that F = and the degree of K / F is an odd prime, with another small restriction on ramification. The very explicit calculations with cyclotomic units use trees and some classical combinatorics for bookkeeping. An important...

The mean values of logarithms of algebraic integers

Artūras Dubickas (1998)

Journal de théorie des nombres de Bordeaux

Let α be an algebraic integer of degree d with conjugates α 1 = α , α 2 , , α d . In the paper we give a lower bound for the mean value M p ( α ) = 1 d i = 1 d | log | α i | | p p when α is not a root of unity and p > 1 .

Currently displaying 121 – 140 of 267