The search session has expired. Please query the service again.
Cet article a pour but de calculer les coefficients du caractère du produit alterné des déterminants des connexions de Gauss–Manin associées à une famille de polynômes sur . Nous généralisons et précisons certains résultats de T. Terasoma (Inv. Math., 1992). L’idée de ce travail est de considérer la structure mixte donnée par l’action des translations entières sur les exposants sur le déterminant de l’image directe de et celle de -module.
Dans cet article, nous définissons une catégorie des motifs sur une catégorie monoïdale symétrique vérifiant certaines hypothèses. Le rôle des espaces sur est joué par les monoïdes (non necessairement commutatifs) dans . Pour définir les morphismes dans , nous utilisons des classes dans les groupes d’homologie cyclique bivariante. Le but est de montrer que les opérateurs de périodicité de Connes induisent des morphismes dans , où est le motif de Tate dans .
To every morphism of differential graded Lie algebras we associate a functors of artin rings whose tangent and obstruction spaces are respectively the first and second cohomology group of the suspension of the mapping cone of .
Such construction applies to Hilbert and Brill-Noether functors and allow to prove with ease that every higher obstruction to deforming a smooth submanifold of a Kähler manifold is annihilated by the semiregularity map.
A complex hypersurface in is a linear free divisor (LFD) if its module of logarithmic vector fields has a global basis of linear vector fields. We classify all LFDs for at most .By analogy with Grothendieck’s comparison theorem, we say that the global logarithmic comparison theorem (GLCT) holds for if the complex of global logarithmic differential forms computes the complex cohomology of . We develop a general criterion for the GLCT for LFDs and prove that it is fulfilled whenever the...
L’objectif dans ce travail est de présenter une généralisation pour l’obstruction d’Euler locale d’une fonction holomorphe singulière à l’origine dans le cas d’une application holomorphe , où est un germe de variété analytique complexe, équidimensionnel de dimension . Le résultat principal (Théorème 6.1) exprime l’obstruction d’Euler locale, définie pour un -repère par Brasselet, Seade, Suwa, en fonction de l’obstruction d’Euler relative à .
Currently displaying 41 –
60 of
78