Displaying 61 – 80 of 146

Showing per page

The modified diagonal cycle on the triple product of a pointed curve

Benedict H. Gross, Chad Schoen (1995)

Annales de l'institut Fourier

Let X be a curve over a field k with a rational point e . We define a canonical cycle Δ e Z 2 ( X 3 ) hom . Suppose that k is a number field and that X has semi-stable reduction over the integers of k with fiber components non-singular. We construct a regular model of X 3 and show that the height pairing τ * ( Δ e ) , τ * ' ( Δ e ) is well defined where τ and τ ' are correspondences. The paper ends with a brief discussion of heights and L -functions in the case that X is a modular curve.

The p -part of Tate-Shafarevich groups of elliptic curves can be arbitrarily large

Remke Kloosterman (2005)

Journal de Théorie des Nombres de Bordeaux

In this paper we show that for every prime p 5 the dimension of the p -torsion in the Tate-Shafarevich group of E / K can be arbitrarily large, where E is an elliptic curve defined over a number field K , with [ K : ] bounded by a constant depending only on p . From this we deduce that the dimension of the p -torsion in the Tate-Shafarevich group of A / can be arbitrarily large, where A is an abelian variety, with dim A bounded by a constant depending only on p .

The probability that a complete intersection is smooth

Alina Bucur, Kiran S. Kedlaya (2012)

Journal de Théorie des Nombres de Bordeaux

Given a smooth subscheme of a projective space over a finite field, we compute the probability that its intersection with a fixed number of hypersurface sections of large degree is smooth of the expected dimension. This generalizes the case of a single hypersurface, due to Poonen. We use this result to give a probabilistic model for the number of rational points of such a complete intersection. A somewhat surprising corollary is that the number of rational points on a random smooth intersection...

Currently displaying 61 – 80 of 146