On the Siegel modular function field of degree three
We obtain an estimate on the average cardinality (d,s,a) of the value set of any family of monic polynomials in of degree d for which s consecutive coefficients are fixed. Our estimate asserts that , where . We also prove that , where ₂(d,s,a) is the average second moment of the value set cardinalities for any family of monic polynomials of of degree d with s consecutive coefficients fixed as above. Finally, we show that , where ₂(d,0) denotes the average second moment for all monic polynomials...
We include short and elementary proofs of two theorems that characterize reductive group schemes over a discrete valuation ring, in a slightly more general context.