Displaying 1461 – 1480 of 1551

Showing per page

Variations on a theme of Runge: effective determination of integral points on certain varieties

Aaron Levin (2008)

Journal de Théorie des Nombres de Bordeaux

We consider some variations on the classical method of Runge for effectively determining integral points on certain curves. We first prove a version of Runge’s theorem valid for higher-dimensional varieties, generalizing a uniform version of Runge’s theorem due to Bombieri. We then take up the study of how Runge’s method may be expanded by taking advantage of certain coverings. We prove both a result for arbitrary curves and a more explicit result for superelliptic curves. As an application of our...

Variétés abéliennes et invariants arithmétiques

Jean Gillibert (2006)

Annales de l’institut Fourier

Dans la continuité de nos travaux précédents, nous étudions un analogue, pour le modèle de Néron d’une variété abélienne semi-stable sur un corps de nombres, du class-invariant homomorphism introduit par M. J. Taylor, qui nous permet de mesurer la structure galoisienne de certains torseurs.

Volcanoes of l-isogenies of elliptic curves over finite fields: The case l=3.

Josep M. Miret Biosca, Daniel Sadornil Renedo, Juan Tena Ayuso, Rosana Tomàs, Magda Valls Marsal (2007)

Publicacions Matemàtiques

This paper is devoted to the study of the volcanoes of ℓ-isogenies of elliptic curves over a finite field, focusing on their height as well as on the location of curves across its different levels. The core of the paper lies on the relationship between the ℓ-Sylow subgroup of an elliptic curve and the level of the volcano where it is placed. The particular case ℓ = 3 is studied in detail, giving an algorithm to determine the volcano of 3-isogenies of a given elliptic curve. Experimental results...

Currently displaying 1461 – 1480 of 1551