Displaying 1201 – 1220 of 1685

Showing per page

Résolution du problème des arcs de Nash pour une famille d’hypersurfaces quasi-rationnelles

Maximiliano Leyton-Alvarez (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Le problème des arcs de Nash pour les singularités normales de surfaces affirme qu’il y aurait autant de familles d’arcs sur un germe de surface singulier ( S , O ) que de diviseurs essentiels sur ( S , O ) . Il est connu que ce problème se réduit à étudier les singularités quasi-rationnelles. L’objet de cet article est de répondre positivement au problème de Nash pour une famille d’hypersurfaces quasi-rationnelles non rationnelles. On applique la même méthode pour répondre positivement à ce problème dans les cas...

Résolution simultanée d'une famille de singularités rationnelles de surface normale

Michel Vaquié (1985)

Annales de l'institut Fourier

Nous étudions une condition d’équisingularité définie pour une famille de singularités de surface normale par l’existence d’une résolution simultanée très faible et par une condition supplémentaire sur les faisceaux pluricanoniques relatifs. Nous donnons dans le cas d’une famille de singularités rationnelles une condition nécessaire et suffisante portant sur les singularités des fibres pour avoir équisingularité.

Resolutions of homogeneous bundles on 2

Giorgio Ottaviani, Elena Rubei (2005)

Annales de l’institut Fourier

We characterize minimal free resolutions of homogeneous bundles on 2 . Besides we study stability and simplicity of homogeneous bundles on 2 by means of their minimal free resolutions; in particular we give a criterion to see when a homogeneous bundle is simple by means of its minimal resolution in the case the first bundle of the resolution is irreducible.

Résultats sur la conjecture de dualité étrange sur le plan projectif

Gentiana Danila (2002)

Bulletin de la Société Mathématique de France

La conjecture de « dualité étrange » de Le Potier donne un isomorphisme entre l’espace des sections du fibré déterminant sur deux espaces de modules différents de faisceaux semi-stables sur le plan projectif 2 . On considère deux classes orthogonales c , u dans l’algèbre de Grothendieck K ( 2 ) telles que c est de rang strictement positif et u est de rang zéro, et on note M c et M u les espaces de modules de faisceaux semi-stables de classe c , respectivement u sur 2 . Il existe sur M c (resp. M u ) un fibré déterminant...

Sections du fibré déterminant sur l'espace de modules des faisceaux semi-stables de rang 2 sur le plan projectif

Gentiana Danila (2000)

Annales de l'institut Fourier

La conjecture de “dualité étrange” de Le Potier donne un isomorphisme entre l’espace des sections du fibré déterminant sur deux espaces de modules différents de faisceaux semi-stables sur le plan projectif 2 . Si on considère deux classes orthogonales c , u dans l’algèbre de Grothendieck K ( 2 ) telles que c est de rang strictement positif et u est de rang zéro, on note M c et M u les espaces de modules de faisceaux semi-stables de classe c , respectivement u , sur 2 . Il existe sur M c (resp. M u ) un fibré déterminant...

Segre-Veronese embeddings of P1 x P1 x P1 and their secant varieties.

Maria Virginia Catalisano, Anthony V. Geramita, Alessandro Gimigliano (2007)

Collectanea Mathematica

In this paper we compute the dimension of all the sth higher secant varieties of the Segre-Veronese embeddings Yd of the product P1 × P1 × P1 in the projective space PN via divisors of multidegree d = (a,b,c) (N = (a+1)(b+1)(c+1) - 1). We find that Yd has no deficient higher secant varieties, unless d = (2,2,2) and s = 7, or d = (2h,1,1) and s = 2h + 1, with defect 1 in both cases.

Currently displaying 1201 – 1220 of 1685