Displaying 1601 – 1620 of 1685

Showing per page

Variétés de modules alternatives

Jean-Marc Drezet (1999)

Annales de l'institut Fourier

Soit X une variété algébrique projective lisse irréductible. On appelle variété de modules fins de faisceaux sur X une famille de faisceaux cohérents sur X paramétrée par une variété intègre M , possédant les propriétés suivantes : est plate sur M ; pour tous x , y M distincts, les faisceaux x et y sur X ne sont pas isomorphes et est une déformation complète de x ; enfin possède une propriété universelle locale évidente. On a aussi la notion de variété de modules fins définie localement, où est...

Variétés horosphériques de Fano

Boris Pasquier (2008)

Bulletin de la Société Mathématique de France

Une variété horosphérique est une variété algébrique normale dans laquelle un groupe algébrique réductif opère avec une orbite ouverte fibrée en tores sur une variété de drapeaux. En particulier, les variétés toriques et les variétés de drapeaux sont horosphériques. Dans cet article, on classifie les variétés horosphériques de Fano en termes de certains polytopes rationnels qui généralisent les polytopes réflexifs considérés par V. Batyrev. Puis on obtient une majoration du degré des variétés horosphériques...

Varieties of minimal rational tangents of codimension 1

Jun-Muk Hwang (2013)

Annales scientifiques de l'École Normale Supérieure

Let  X be a uniruled projective manifold and let  x be a general point. The main result of [2] says that if the ( - K X ) -degrees (i.e., the degrees with respect to the anti-canonical bundle of  X ) of all rational curves through x are at least dim X + 1 , then X is a projective space. In this paper, we study the structure of  X when the ( - K X ) -degrees of all rational curves through x are at least dim X . Our study uses the projective variety 𝒞 x T x ( X ) , called the VMRT at  x , defined as the union of tangent directions to the rational curves...

Varieties with generically nef tangent bundles

Thomas Peternell (2012)

Journal of the European Mathematical Society

We study various "generic" nefness and ampleness notions for holomorphic vector bundles on a projective manifold. We apply this in particular to the tangent bundle and investigate the relation to the geometry of the manifold.

Vector bundles on non-Kaehler elliptic principal bundles

Vasile Brînzănescu, Andrei D. Halanay, Günther Trautmann (2013)

Annales de l’institut Fourier

We study relatively semi-stable vector bundles and their moduli on non-Kähler principal elliptic bundles over compact complex manifolds of arbitrary dimension. The main technical tools used are the twisted Fourier-Mukai transform and a spectral cover construction. For the important example of such principal bundles, the numerical invariants of a 3-dimensional non-Kähler elliptic principal bundle over a primary Kodaira surface are computed.

Currently displaying 1601 – 1620 of 1685