The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 181 –
200 of
212
We study the long-time behavior of infinite-energy solutions to the incompressible Navier-Stokes equations in a two-dimensional exterior domain, with no-slip boundary conditions. The initial data we consider are finite-energy perturbations of a smooth vortex with small circulation at infinity, but are otherwise arbitrarily large. Using a logarithmic energy estimate and some interpolation arguments, we prove that the solution approaches a self-similar Oseen vortex as . This result was obtained in...
The nonlinear heat equation with a fractional Laplacian , is considered in a unit ball . Homogeneous boundary conditions and small initial conditions are examined. For 3/2 + ε₁ ≤ α ≤ 2, where ε₁ > 0 is small, the global-in-time mild solution from the space with κ < α - 1/2 is constructed in the form of an eigenfunction expansion series. The uniqueness is proved for 0 < κ < α - 1/2, and the higher-order long-time asymptotics is calculated.
In this paper, we survey some recent results on the asymptotic behavior, as time tends to infinity, of solutions to the Cauchy problems for the generalized Korteweg-de Vries-Burgers equation and the generalized Benjamin-Bona-Mahony-Burgers equation. The main results give higher-order terms of the asymptotic expansion of solutions.
We study the first initial boundary value problem for the 2D non-autonomous g-Navier-Stokes equations in an arbitrary (bounded or unbounded) domain satisfying the Poincaré inequality. The existence of a weak solution to the problem is proved by using the Galerkin method. We then show the existence of a unique minimal finite-dimensional pullback -attractor for the process associated to the problem with respect to a large class of non-autonomous forcing terms. Furthermore, when the force is time-independent...
We give sufficient conditions for the existence of global small solutions to the quasilinear dissipative hyperbolic equation
corresponding to initial values and source terms of sufficiently small size, as well as of small solutions to the corresponding stationary version, i.e. the quasilinear elliptic equation
We then give conditions for the convergence, as , of the solution of the evolution equation to its stationary state.
This article is devoted to the study of a flame ball model, derived by G. Joulin, which satisfies a singular integro-differential equation. We prove that, when radiative heat losses are too important, the flame always quenches; when heat losses are smaller, it stabilizes or quenches, depending on an energy input parameter. We also examine the asymptotics of the radius for these different regimes.
In this paper, we study the numerical approximation of a size-structured population model
whose dependency on the environment is managed by the evolution of a vital resource. We
show that this is a difficult task: some numerical methods are not suitable for a
long-time integration. We analyze the reasons for the failure.
We report our results on long-time stability of multi–dimensional noncharacteristic boundary layers of a class of hyperbolic–parabolic systems including the compressible Navier–Stokes equations with inflow [outflow] boundary conditions, under the assumption of strong spectral, or uniform Evans, stability. Evans stability has been verified for small-amplitude layers by Guès, Métivier, Williams, and Zumbrun. For large–amplitudes, it may be checked numerically, as done in one–dimensional case for isentropic...
In this survey paper, we are concerned with the zero Mach number limit for compressible viscous flows. For the sake of (mathematical) simplicity, we restrict ourselves to the case of barotropic fluids and we assume that the flow evolves in the whole space or satisfies periodic boundary conditions. We focus on the case of ill-prepared data. Hence highly oscillating acoustic waves are likely to propagate through the fluid. We nevertheless state the convergence to the incompressible Navier-Stokes equations...
In this survey paper,
we are concerned with the zero Mach number limit
for compressible viscous flows.
For the sake of (mathematical) simplicity,
we restrict ourselves to the case of barotropic
fluids and we
assume that the flow evolves in the whole space
or satisfies periodic boundary conditions. We focus on the case of ill-prepared data.
Hence highly oscillating acoustic waves
are likely to propagate through the fluid.
We nevertheless state
the convergence to the incompressible Navier-Stokes...
This article deals with the low Mach number limit of the compressible Euler-Korteweg equations. It is justified rigorously that solutions of the compressible Euler-Korteweg equations converge to those of the incompressible Euler equations as the Mach number tends to zero. Furthermore, the desired convergence rates are also obtained.
The purpose of this talk is to present some recent results about the Cauchy theory of the gravity water waves equations (without surface tension). In particular, we clarify the theory as well in terms of regularity indexes for the initial conditions as fin terms of smoothness of the bottom of the domain (namely no regularity assumption is assumed on the bottom). Our main result is that, following the approach developed in [1, 2], after suitable para-linearizations, the system can be arranged into...
Currently displaying 181 –
200 of
212