Comportement semi-classique du spectre des hamiltoniens quantiques hypoelliptiques
Dans cet article nous généralisons les résultats obtenus par J. Chazarain sur le spectre d’opérateurs de Schrödinger lorsque . Nous étendons ses résultats aux opérateurs pseudo-différentiels globalement elliptiques d’ordre .
We consider a Schrödinger operator with a magnetic field (and no electric field) on a domain in the Euclidean space with a compact boundary. We give sufficient conditions on the behaviour of the magnetic field near the boundary which guarantees essential self-adjointness of this operator. From the physical point of view, it means that the quantum particle is confined in the domain by the magnetic field. We construct examples in the case where the boundary is smooth as well as for polytopes; These...
For the Schrödinger equation, on a torus, an arbitrary non-empty open set provides control and observability of the solution: . We show that the same result remains true for where , and is a (rational or irrational) torus. That extends the results of [1], and [8] where the observability was proved for and conjectured for . The higher dimensional generalization remains open for .
The purpose of this note is twofold. First it is a corrigenda of our paper [RV1]. And secondly we make some remarks concerning the interpolation properties of Morrey spaces.
On présente ici une approche directe et géométrique pour le calcul des déterminants d’opérateurs de type Schrödinger sur un graphe fini. Du calcul de l’intégrale de Fresnel associée, on déduit le déterminant. Le calcul des intégrales de Fresnel est grandement facilité par l’utilisation simultanée du théorème de Fubini et d’une version linéaire du calcul symbolique des opérateurs intégraux de Fourier. On obtient de façon directe une formule générale exprimant le déterminant en terme des conditions...
In [2] Kenig, Ruiz and Sogge provedprovided , and is a second order operator with constant coefficients such that the second order coefficients are real and nonsingular. As a consequence of [3] we state local versions of this inequality for operators with coefficients. In this paper we show how to apply these local versions to the absence of embedded eigenvalues for potentials in and variants thereof.