Displaying 81 – 100 of 290

Showing per page

Existence of solutions for some quasilinear p ( x ) -elliptic problem with Hardy potential

Elhoussine Azroul, Mohammed Bouziani, Hassane Hjiaj, Ahmed Youssfi (2019)

Mathematica Bohemica

We consider the anisotropic quasilinear elliptic Dirichlet problem - i = 1 N D i a i ( x , u , u ) + | u | s ( x ) - 1 u = f + λ | u | p 0 ( x ) - 2 u | x | p 0 ( x ) in Ω , u = 0 on Ω , where Ω is an open bounded subset of N containing the origin. We show the existence of entropy solution for this equation where the data f is assumed to be in L 1 ( Ω ) and λ is a positive constant.

Existence of two positive solutions for a class of semilinear elliptic equations with singularity and critical exponent

Jia-Feng Liao, Jiu Liu, Peng Zhang, Chun-Lei Tang (2016)

Annales Polonici Mathematici

We study the following singular elliptic equation with critical exponent ⎧ - Δ u = Q ( x ) u 2 * - 1 + λ u - γ in Ω, ⎨u > 0 in Ω, ⎩u = 0 on ∂Ω, where Ω N (N≥3) is a smooth bounded domain, and λ > 0, γ ∈ (0,1) are real parameters. Under appropriate assumptions on Q, by the constrained minimizer and perturbation methods, we obtain two positive solutions for all λ > 0 small enough.

Faisceaux maximaux de fonctions associées à un opérateur elliptique du second ordre

Denis Feyel, A. de La Pradelle (1976)

Annales de l'institut Fourier

Soit F le faisceau des sursolutions variationnelles d’un opérateur différentiel elliptique du second ordre à coefficients L loc . Soit F ^ le faisceau des régularitées essentielles inférieures des éléments de F . On démontre que F ^ est contenu dans un seul préfaisceau F * maximal de cônes convexes de fonctions s.c.i. > - vérifiant le principe du minimum sur une base d’ouverts suffisamment petits. On démontre que F * possède toutes les bonnes propriétés d’une théorie locale du potentiel.

Fully nonlinear second order elliptic equations with large zeroth order coefficient

L. C. Evans, Pierre-Louis Lions (1981)

Annales de l'institut Fourier

We prove the existence of classical solutions to certain fully non-linear second order elliptic equations with large zeroth order coefficient. The principal tool is an a priori estimate asserting that the C 2 , α -norm of the solution cannot lie in a certain interval of the positive real axis.

Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms

Salvatore Bonafede (2018)

Commentationes Mathematicae Universitatis Carolinae

We prove the local Hölder continuity of bounded generalized solutions of the Dirichlet problem associated to the equation i = 1 m x i a i ( x , u , u ) - c 0 | u | p - 2 u = f ( x , u , u ) , assuming that the principal part of the equation satisfies the following degenerate ellipticity condition λ ( | u | ) i = 1 m a i ( x , u , η ) η i ν ( x ) | η | p , and the lower-order term f has a natural growth with respect to u .

Currently displaying 81 – 100 of 290