Overdetermined problems and the -Laplacian
Let be a bounded simply connected domain in the complex plane, . Let be a neighborhood of , let be fixed, and let be a positive weak solution to the Laplace equation in Assume that has zero boundary values on in the Sobolev sense and extend to by putting on Then there exists a positive finite Borel measure on with support contained in and such thatwhenever If and if is the Green function for with pole at then the measure coincides with harmonic measure...
When and the -harmonic measure on the boundary of the half plane is not additive on null sets. In fact, there are finitely many sets , ,..., in , of -harmonic measure zero, such that .
Via critical point theory we establish the existence and regularity of solutions for the quasilinear elliptic problem ⎧ in ⎨ ⎩ u > 0, , where 1 < p < N; a(x) is assumed to satisfy a coercivity condition; h(x) and g(x) are not necessarily bounded but satisfy some integrability restrictions.
In the paper we present an identity of the Picone type for a class of nonlinear differential operators of the second order involving an arbitrary norm in which is continuously differentiable for and such that is strictly convex for some . Two important special cases are the -Laplacian and the so-called pseudo -Laplacian. The identity is then used to establish a variety of comparison results concerning nonlinear degenerate elliptic equations which involve such operators. We also get criteria...
Let be a weak solution of a quasilinear elliptic equation of the growth with a measure right hand term . We estimate at an interior point of the domain , or an irregular boundary point , in terms of a norm of , a nonlinear potential of and the Wiener integral of . This quantifies the result on necessity of the Wiener criterion.
We study the existence and nonexistence of positive solutions of the nonlinear equation where , , is a regular bounded open domain in and the -Laplacian is introduced for a continuous function defined on . The positive parameter induces the bifurcation phenomena. The study of the equation (Q) needs generalized Lebesgue and Sobolev spaces. In this paper, under suitable assumptions, we show that some variational methods still work. We use them to prove the existence of positive solutions...
We consider the existence of positive solutions of -pu=g(x)|u|p-2u+h(x)|u|q-2u+f(x)|u|p*-2u(1) in , where , , , the critical Sobolev exponent, and , . Let be the principal eigenvalue of -pu=g(x)|u|p-2u in , g(x)|u|p>0, (2) with the associated eigenfunction. We prove that, if , if and if , then there exist and , such that for and , (1) has at least one positive solution.