Displaying 221 – 240 of 898

Showing per page

Diffusion and cross-diffusion in pattern formation

Wei-Ming Ni (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We discuss the stability and instability properties of steady state solutions to single equations, shadow systems, as well as 2 × 2 systems. Our basic observation is that the more complicated the pattern are, the more unstable they tend to be.

Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions

Oto Havle, Vít Dolejší, Miloslav Feistauer (2010)

Applications of Mathematics

The paper is devoted to the analysis of the discontinuous Galerkin finite element method (DGFEM) applied to the space semidiscretization of a nonlinear nonstationary convection-diffusion problem with mixed Dirichlet-Neumann boundary conditions. General nonconforming meshes are used and the NIPG, IIPG and SIPG versions of the discretization of diffusion terms are considered. The main attention is paid to the impact of the Neumann boundary condition prescribed on a part of the boundary on the truncation...

Efficient algorithm to solve optimal boundary control problem for Burgers' equation

Alaeddin Malek, Roghayeh Ebrahim Nataj, Mohamad Javad Yazdanpanah (2012)

Kybernetika

In this paper, we propose a novel algorithm for solving an optimal boundary control problem of the Burgers' equation. The solving method is based on the transformation of the original problem into a homogeneous boundary conditions problem. This transforms the original problem into an optimal distributed control problem. The modal expansion technique is applied to the distributed control problem of the Burgers' equation to generate a low-dimensional dynamical system. The control parametrization method...

Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations

Martin A. Grepl, Yvon Maday, Ngoc C. Nguyen, Anthony T. Patera (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we extend the reduced-basis approximations developed earlier for linear elliptic and parabolic partial differential equations with affine parameter dependence to problems involving (a) nonaffine dependence on the parameter, and (b) nonlinear dependence on the field variable. The method replaces the nonaffine and nonlinear terms with a coefficient function approximation which then permits an efficient offline-online computational decomposition. We first review the coefficient function...

Entropy solution for anisotropic reaction-diffusion-advection systems with L1 data.

Mostafa Bendahmane, Mazen Saad (2005)

Revista Matemática Complutense

In this paper, we study the question of existence and uniqueness of entropy solutions for a system of nonlinear partial differential equations with general anisotropic diffusivity and transport effects, supplemented with no-flux boundary conditions, modeling the spread of an epidemic disease through a heterogeneous habitat.

Currently displaying 221 – 240 of 898