Displaying 41 – 60 of 95

Showing per page

L’existence et le comportement asymptotique des solutions d’ondes progressives pour une équation fortement non linéaire

Ahmed Hamydy (2008)

Annales mathématiques Blaise Pascal

Dans ce papier on étudie l’existence et le comportement asymptotique des solutions de type ondes progressives à propagations finies de l’équation U t = A U x p - 2 U x x + K U q . On prouve que ces solutions existent si et seulement si q < 1 et c < 0 ou bien q p - 1 et c > 0 . On donne aussi le comportement asymptotique de ces solutions.

Lie symmetry of a class of nonlinear boundary value problems with free boundaries

Roman Cherniha, Sergii Kovalenko (2011)

Banach Center Publications

A class of (1 + 1)-dimensional nonlinear boundary value problems (BVPs), modeling the process of melting and evaporation of solid materials, is studied by means of the classical Lie symmetry method. A new definition of invariance in Lie's sense for BVP is presented and applied to the class of BVPs in question.

Limite de la solution de ut - ∆um + div F(u) = 0 lorsque m --> ∞.

Philippe Bénilan, Noureddine Igbida (2000)

Revista Matemática Complutense

Dans cette article, on étudie la limite lorsque m --> ∞ de la solution du problème de Cauchy ut - ∆um + div F(u) = 0 sur un ouvert Omega avec des conditions aux bords de type Dirichlet et une donnée initiale u0 ≥ 0.

Linear parabolic problems involving measures.

Herbert Amann (2001)

RACSAM

Desarrollamos una teoría general para la resolución de ecuaciones lineales de evolución de la forma ü + Au = μ sobre R+, donde -A es el generador infinitesimal de un semigrupo analítico fuertemente continuo y μ es una medida de Radón con valores en un espacio de Banach. Utilizamos la teoría de interpolación-extrapolación de espacios y el teorema de representación de Riesz para tales medidas.Los resultados abstractos son ilustrados mediante aplicaciones a problemas de valor inicial parabólicos de...

Linear Stability of Fractional Reaction - Diffusion Systems

Y. Nec, A. A. Nepomnyashchy (2010)

Mathematical Modelling of Natural Phenomena

Theoretical framework for linear stability of an anomalous sub-diffusive activator-inhibitor system is set. Generalized Turing instability conditions are found to depend on anomaly exponents of various species. In addition to monotonous instability, known from normal diffusion, in an anomalous system oscillatory modes emerge. For equal anomaly exponents for both species the type of unstable modes is determined by the ratio of the reactants' diffusion coefficients. When the ratio exceeds its normal...

Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems

Juraj Földes (2011)

Czechoslovak Mathematical Journal

In this paper we establish new nonlinear Liouville theorems for parabolic problems on half spaces. Based on the Liouville theorems, we derive estimates for the blow-up of positive solutions of indefinite parabolic problems and investigate the complete blow-up of these solutions. We also discuss a priori estimates for indefinite elliptic problems.

Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations

Thomas Bartsch, Peter Poláčik, Pavol Quittner (2011)

Journal of the European Mathematical Society

We prove a Liouville type theorem for sign-changing radial solutions of a subcritical semilinear heat equation u t = Δ u + u p - 1 u . We use this theorem to derive a priori bounds, decay estimates, and initial and final blow-up rates for radial solutions of rather general semilinear parabolic equations whose nonlinearities have a subcritical polynomial growth. Further consequences on the existence of steady states and time-periodic solutions are also shown.

Lipschitz stability in the determination of the principal part of a parabolic equation

Ganghua Yuan, Masahiro Yamamoto (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Let y ( h ) ( t , x ) be one solution to t y ( t , x ) - i , j = 1 n j ( a i j ( x ) i y ( t , x ) ) = h ( t , x ) , 0 < t < T , x Ω with a non-homogeneous term h , and y | ( 0 , T ) × Ω = 0 , where Ω n is a bounded domain. We discuss an inverse problem of determining n ( n + 1 ) / 2 unknown functions a i j by { ν y ( h ) | ( 0 , T ) × Γ 0 , y ( h ) ( θ , · ) } 1 0 after selecting input sources h 1 , . . . , h 0 suitably, where Γ 0 is an arbitrary subboundary, ν denotes the normal derivative, 0 < θ < T and 0 . In the case of 0 = ( n + 1 ) 2 n / 2 , we prove the Lipschitz stability in the inverse problem if we choose ( h 1 , . . . , h 0 ) from a set { C 0 ( ( 0 , T ) × ω ) } 0 with an arbitrarily fixed subdomain ω Ω . Moreover we can take 0 = ( n + 3 ) n / 2 by making special choices for h , 1 0 . The proof is...

Lipschitz stability in the determination of the principal part of a parabolic equation

Ganghua Yuan, Masahiro Yamamoto (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Let y(h)(t,x) be one solution to t y ( t , x ) - i , j = 1 n j ( a i j ( x ) i y ( t , x ) ) = h ( t , x ) , 0 < t < T , x Ω with a non-homogeneous term h, and y | ( 0 , T ) × Ω = 0 , where Ω n is a bounded domain. We discuss an inverse problem of determining n(n+1)/2 unknown functions aij by { ν y ( h ) | ( 0 , T ) × Γ 0 , y ( h ) ( θ , · ) } 1 0 after selecting input sources h 1 , . . . , h 0 suitably, where Γ 0 is an arbitrary subboundary, ν denotes the normal derivative, 0 < θ < T and 0 . In the case of 0 = ( n + 1 ) 2 n / 2 , we prove the Lipschitz stability in the inverse problem if we choose ( h 1 , . . . , h 0 ) from a set { C 0 ( ( 0 , T ) × ω ) } 0 with an arbitrarily fixed subdomain ω Ω . Moreover we can take 0 = ( n + 3 ) n / 2 by making special choices for...

Currently displaying 41 – 60 of 95