Displaying 1841 – 1860 of 2234

Showing per page

The energy method for a class of hyperbolic equations

Enrico Jannelli (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa nota viene introdotto un nuovo metodo per ottenere espressioni esplicite dell'energia della soluzione dell'equazione iperbolica ( t ) m u + | ν | + j m ; j m - 1 a ν , j ( t ) ( x ) ν ( t ) j u = 0. Stimando opportunamente queste espressioni si ottengono nuovi risultati di buona positura negli spazi di Gevrey per l'equazione ( ) quando questa è debolmente iperbolica.

The existence of Carathéodory solutions of hyperbolic functional differential equations

Adrian Karpowicz (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We consider the following Darboux problem for the functional differential equation ² u / x y ( x , y ) = f ( x , y , u ( x , y ) , u / x ( x , y ) , u / y ( x , y ) ) a.e. in [0,a]×[0,b], u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b] 0 , a ] × ( 0 , b ] , where the function u ( x , y ) : [ - a , 0 ] × [ - b , 0 ] k is defined by u ( x , y ) ( s , t ) = u ( s + x , t + y ) for (s,t) ∈ [-a₀,0]×[-b₀,0]. We prove a theorem on existence of the Carathéodory solutions of the above problem.

The FBI transform, operators with nonsmooth coefficients and the nonlinear wave equation

Daniel Tataru (1999)

Journées équations aux dérivées partielles

The aim of this work is threefold. First we set up a calculus for partial differential operators with nonsmooth coefficients which is based on the FBI (Fourier-Bros-Iagolnitzer) transform. Then, using this calculus, we prove a weaker version of the Strichartz estimates for second order hyperbolic equations with nonsmooth coefficients. Finally, we apply these new Strichartz estimates to second order nonlinear hyperbolic equations and improve the local theory, i.e. prove local well-posedness for initial...

The geometrical quantity in damped wave equations on a square

Pascal Hébrard, Emmanuel Humbert (2006)

ESAIM: Control, Optimisation and Calculus of Variations

The energy in a square membrane Ω subject to constant viscous damping on a subset ω Ω decays exponentially in time as soon as ω satisfies a geometrical condition known as the “Bardos-Lebeau-Rauch” condition. The rate τ ( ω ) of this decay satisfies τ ( ω ) = 2 min ( - μ ( ω ) , g ( ω ) ) (see Lebeau [Math. Phys. Stud.19 (1996) 73–109]). Here μ ( ω ) denotes the spectral abscissa of the damped wave equation operator and  g ( ω ) is a number called the geometrical quantity of ω and defined as follows. A ray in Ω is the trajectory generated by the free motion...

Currently displaying 1841 – 1860 of 2234