Global weak solutions of the Navier-Stokes equations with nonhomogeneous boundary data and divergence
The paper contains the proof of global existence of weak solutions to the mixed initial-boundary value problem for a certain modification of a system of equations of motion of viscous compressible fluid. The modification is based on an application of an operator of regularization to some terms appearing in the system of equations and it does not contradict the laws of fluid mechanics. It is assumed that pressure is a known function of density. The method of discretization in time is used and finally,...
The concept of regularization to the complete system of Navier-Stokes equations for viscous compressible heat conductive fluid is developed. The existence of weak solutions for the initial boundary value problem for the modified equations is proved. Some energy and etropy estimates independent of the parameter of regularization are derived.
In this paper we prove the existence of a global φ-attractor in the weak topology of the natural phase space for the family of multi-valued processes generated by solutions of a nonautonomous modified 3D Bénard system in unbounded domains for which Poincaré inequality takes place.
A numerically inexpensive globalization strategy of sequential quadratic programming methods (SQP-methods) for control of the instationary Navier Stokes equations is investigated. Based on the proper functional analytic setting a convergence analysis for the globalized method is given. It is argued that the a priori formidable SQP-step can be decomposed into linear primal and linear adjoint systems, which is amenable for existing CFL-software. A report on a numerical test demonstrates the feasibility...
A numerically inexpensive globalization strategy of sequential quadratic programming methods (SQP-methods) for control of the instationary Navier Stokes equations is investigated. Based on the proper functional analytic setting a convergence analysis for the globalized method is given. It is argued that the a priori formidable SQP-step can be decomposed into linear primal and linear adjoint systems, which is amenable for existing CFL-software. A report on a numerical test demonstrates the feasibility...
We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.
We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ε) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.
We construct a new initial data to prove the ill-posedness of both Navier-Stokes and Euler equations in weaker Besov spaces in the sense that the solution maps to these equations starting from are discontinuous at .
This paper is devoted to the study of a turbulent circulation model. Equations are derived from the “Navier-Stokes turbulent kinetic energy” system. Some simplifications are performed but attention is focused on non linearities linked to turbulent eddy viscosity . The mixing length acts as a parameter which controls the turbulent part in . The main theoretical results that we have obtained concern the uniqueness of the solution for bounded eddy viscosities and small values of and its asymptotic...
This paper is devoted to the study of a turbulent circulation model. Equations are derived from the “Navier-Stokes turbulent kinetic energy” system. Some simplifications are performed but attention is focused on non linearities linked to turbulent eddy viscosity . The mixing length acts as a parameter which controls the turbulent part in . The main theoretical results that we have obtained concern the uniqueness of the solution for bounded eddy viscosities and small values of and its asymptotic...
In this paper we study the incompressible inviscid limit of the full magnetohydrodynamic flows on expanding domains with general initial data. By applying the relative energy method and carrying out detailed analysis on the oscillation part of the velocity, we prove rigorously that the gradient part of the weak solutions of the full magnetohydrodynamic flows converges to the strong solution of the incompressible Euler system in the whole space, as the Mach number, viscosity as well as the heat conductivity...
On établit ici, suivant [5], une inégalité de Carleman globale optimale pour les solutions faibles (au sens ) d’équations elliptiques générales avec second membre dans et trace non nulle.La motivation, qui est expliquée dans l’introduction, réside dans l’obtention d’inégalités de Carleman globale pour l’opérateur de Navier-Stokes linéarisé afin, notamment, d’étudier les questions de contrôlabilité exacte sur les trajectoires pour les équations de Navier-Stokes. Une étape majeure consiste à obtenir...