Structural stability for Brinkman-Forchheimer equations.
In this paper, we are interested in modelling the flow of the coolant (water) in a nuclear reactor core. To this end, we use a monodimensional low Mach number model supplemented with the stiffened gas law. We take into account potential phase transitions by a single equation of state which describes both pure and mixture phases. In some particular cases, we give analytical steady and/or unsteady solutions which provide qualitative information about the flow. In the second part of the paper, we introduce...
In this paper, we propose a new diffuse interface model for the study of three immiscible component incompressible viscous flows. The model is based on the Cahn-Hilliard free energy approach. The originality of our study lies in particular in the choice of the bulk free energy. We show that one must take care of this choice in order for the model to give physically relevant results. More precisely, we give conditions for the model to be well-posed and to satisfy algebraically and dynamically consistency...
Three-dimensional anisotropic magneto-hydrodynamical system is investigated in the whole space . Existence and uniqueness results are proved in the anisotropic Sobolev space for . Asymptotic behavior of the solution when the Rossby number goes to zero is studied. The proofs, where the incompressibility condition is crucial, use the energy method, an appropriate dyadic decomposition of the frequency space, product laws in anisotropic Sobolev spaces and Strichartz-type estimates.
Le système d’évolution de Nernst-Planck-Poisson-Boltzmann modélise les transferts ioniques en milieu poreux saturé en prenant en compte des interactions électrocapillaires au contact du substrat. Ce modèle présente un intérêt particulier en génie civil pour étudier la dégradation par corrosion des matériaux cimentaires, à structure micro-locale périodique, sous l’effet des ions chlorures. Les techniques d’homogénéisation sont alors un outil puissant pour élaborer un modèle macroscopique équivalent...
Dans cet article nous présentons quelques problèmes et résultats d’homogénéisation non locale pour certaines équations de type dégénéré. Nous considérons des équations de transport, une équation des ondes dégénérée et une équation différentielle de Riccati, et nous décrivons dans chacun des cas les effets non locaux induits par homogénéisation. Nous donnons aussi quelques résultats sur l’analyse mathématique des équations des fluides miscibles en milieu poreux.
Cet exposé s’intéresse à un modèle réaliste issu de la mécanique des fluides. L’objectif est de montrer qu’il est possible de traiter dans un tel cadre des problèmes d’instabilité soulevés par la propagation de singularités qualifiées de surcritiques. D’abord, nous introduisons le modèle (équations de type Navier-Stokes) et ses motivations (questions liées à la propagation d’oscillations en régime turbulent). Ensuite, nous présentons deux résultats (relatifs au caractère bien posé d’un problème...
Dans cet article on étudie la régularité analytique (ou Gevrey) des courbes intégrales de champs de vecteurs solutions non nécessairement lipschitziennes du système d’Euler incompressible. On en déduit que le front d’onde analytique (ou Gevrey) de ces solutions est localisé dans la variété caractéristique de l’opérateur linéarisé.