Displaying 2041 – 2060 of 3679

Showing per page

On the conditional regularity of the Navier-Stokes and related equations

Dongho Chae (2006)

Banach Center Publications

We present regularity conditions for a solution to the 3D Navier-Stokes equations, the 3D Euler equations and the 2D quasigeostrophic equations, considering the vorticity directions together with the vorticity magnitude. It is found that the regularity of the vorticity direction fields is most naturally measured in terms of norms of the Triebel-Lizorkin type.

On the controllability and stabilization of the linearized Benjamin-Ono equation

Felipe Linares, Jaime H. Ortega (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this work we are interested in the study of controllability and stabilization of the linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls acting in the equation such that the volume of the solution is conserved. We study also the stabilization with a feedback law which...

On the controllability and stabilization of the linearized Benjamin-Ono equation

Felipe Linares, Jaime H. Ortega (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this work we are interested in the study of controllability and stabilization of the linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls acting in the equation such that the volume of the solution is conserved. We study also the stabilization with a feedback law...

On the controllability of the Burger equation

T. Horsin (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We present here a return method to describe some attainable sets on an interval of the classical Burger equation by means of the variation of the domain.

On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation

Georgios E. Zouraris (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We discretize the nonlinear Schrödinger equation, with Dirichlet boundary conditions, by a linearly implicit two-step finite element method which conserves the L 2 norm. We prove optimal order a priori error estimates in the L 2 and H 1 norms, under mild mesh conditions for two and three space dimensions.

On the critical Neumann problem with lower order perturbations

Jan Chabrowski, Bernhard Ruf (2007)

Colloquium Mathematicae

We investigate the solvability of the Neumann problem (1.1) involving a critical Sobolev exponent and lower order perturbations in bounded domains. Solutions are obtained by min max methods based on a topological linking. A nonlinear perturbation of a lower order is allowed to interfere with the spectrum of the operator -Δ with the Neumann boundary conditions.

On the derivation and mathematical analysis of some quantum–mechanical models accounting for Fokker–Planck type dissipation: Phase space, Schrödinger and hydrodynamic descriptions

José Luis López, Jesús Montejo–Gámez (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

This paper is intended to provide the reader with a review of the authors’ latest results dealing with the modeling of quantum dissipation/diffusion effects at the level of Schrödinger systems, in connection with the corresponding phase space and fluid formulations of such kind of phenomena, especially in what concerns the role of the Fokker–Planck mechanism in the description of open quantum systems and the macroscopic dynamics associated with some viscous hydrodynamic models of Euler and Navier–Stokes...

On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation

François Castella (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present the semi-conductor Boltzmann equation, which is time-reversible, and indicate that it can be formally derived by considering the large time and small perturbing potential limit in the Von-Neumann equation (time-reversible). We then rigorously compute the corresponding asymptotics in the case of the Von-Neumann equation on the Torus. We show that the limiting equation we obtain does not coincide with the physically realistic model. The former is indeed an equation of Boltzmann type, yet...

On the derivation of homogeneous hydrostatic equations

Emmanuel Grenier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we study the derivation of homogeneous hydrostatic equations starting from 2D Euler equations, following for instance [2,9]. We give a convergence result for convex profiles and a divergence result for a particular inflexion profile.

On the derivation of the Gross-Pitaevskii equation

Riccardo Adami (2005)

Bollettino dell'Unione Matematica Italiana

This article reflects in its content the talk the author gave at the XVII Congresso dell’Unione Matematica Italiana, held in Milano, 8-13 September 2003. We review about some recent results on the problem of deriving the Gross-Pitaevskii equation in dimension one from the dynamics of a quantum system with a large number of identical bosons. We explain the motivations for some peculiar choices (shape of the interaction potential, scaling, initial datum). Open problems are pointed out and difficulties...

Currently displaying 2041 – 2060 of 3679