Displaying 2101 – 2120 of 3679

Showing per page

On the global regularity of N -dimensional generalized Boussinesq system

Kazuo Yamazaki (2015)

Applications of Mathematics

We study the N -dimensional Boussinesq system with dissipation and diffusion generalized in terms of fractional Laplacians. In particular, we show that given the critical dissipation, a solution pair remains smooth for all time even with zero diffusivity. In the supercritical case, we obtain component reduction results of regularity criteria and smallness conditions for the global regularity in dimensions two and three.

On the global regularity of subcritical Euler–Poisson equations with pressure

Eitan Tadmor, Dongming Wei (2008)

Journal of the European Mathematical Society

We prove that the one-dimensional Euler–Poisson system driven by the Poisson forcing together with the usual γ -law pressure, γ 1 , admits global solutions for a large class of initial data. Thus, the Poisson forcing regularizes the generic finite-time breakdown in the 2 × 2 p -system. Global regularity is shown to depend on whether or not the initial configuration of the Riemann...

On the heat kernel and the Korteweg--de Vries hierarchy

Plamen Iliev (2005)

Annales de l’institut Fourier

We give explicit formulas for Hadamard's coefficients in terms of the tau-function of the Korteweg-de Vries hierarchy. We show that some of the basic properties of these coefficients can be easily derived from these formulas.

On the hierarchies of higher order mKdV and KdV equations

Axel Grünrock (2010)

Open Mathematics

The Cauchy problem for the higher order equations in the mKdV hierarchy is investigated with data in the spaces H ^ s r defined by the norm v 0 H ^ s r : = ξ s v 0 ^ L ξ r ' , ξ = 1 + ξ 2 1 2 , 1 r + 1 r ' = 1 . Local well-posedness for the jth equation is shown in the parameter range 2 ≥ 1, r > 1, s ≥ 2 j - 1 2 r ' . The proof uses an appropriate variant of the Fourier restriction norm method. A counterexample is discussed to show that the Cauchy problem for equations of this type is in general ill-posed in the C 0-uniform sense, if s < 2 j - 1 2 r ' . The results for r = 2 - so far in...

On the importance of solid deformations in convection-dominated liquid/solid phase change of pure materials

Daniela Mansutti, Edoardo Bucchignani (2011)

Applications of Mathematics

We analyse the effect of the mechanical response of the solid phase during liquid/solid phase change by numerical simulation of a benchmark test based on the well-known and debated experiment of melting of a pure gallium slab counducted by Gau & Viskanta in 1986. The adopted mathematical model includes the description of the melt flow and of the solid phase deformations. Surprisingly the conclusion reached is that, even in this case of pure material, the contribution of the solid phase to the...

On the inequalities associated with a model of Graffi for the motion of a mixture of two viscous, incompressible fluids

Giovanni Prouse, Anna Zaretti (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We demonstrate a theorem of existence and uniqueness on a large scale of the solution of a system of differential disequations associated to a Graffi model relative to the motion of two incompressible viscous fluids.

On the Influence of Discrete Adhesive Patterns for Cell Shape and Motility: A Computational Approach

C. Franco, T. Tzvetkova-Chevolleau, A. Stéphanou (2010)

Mathematical Modelling of Natural Phenomena

In this paper, we propose a computational model to investigate the coupling between cell’s adhesions and actin fibres and how this coupling affects cell shape and stability. To accomplish that, we take into account the successive stages of adhesion maturation from adhesion precursors to focal complexes and ultimately to focal adhesions, as well as the actin fibres evolution from growing filaments, to bundles and finally contractile stress fibres.We use substrates with discrete patterns of adhesive...

On the inf-sup condition for higher order mixed FEM on meshes with hanging nodes

Vincent Heuveline, Friedhelm Schieweck (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider higher order mixed finite element methods for the incompressible Stokes or Navier-Stokes equations with Qr-elements for the velocity and discontinuous P r - 1 -elements for the pressure where the order r can vary from element to element between 2 and a fixed bound r * . We prove the inf-sup condition uniformly with respect to the meshwidth h on general quadrilateral and hexahedral meshes with hanging nodes.

On the inhomogeneous nonlinear Schrödinger equation with harmonic potential and unbounded coefficient

Jianqing Chen (2010)

Czechoslovak Mathematical Journal

By deriving a variant of interpolation inequality, we obtain a sharp criterion for global existence and blow-up of solutions to the inhomogeneous nonlinear Schrödinger equation with harmonic potential i ϕ t = - ϕ + | x | 2 ϕ - | x | b | ϕ | p - 2 ϕ . We also prove the existence of unstable standing-wave solutions via blow-up under certain conditions on the unbounded inhomogeneity and the power of nonlinearity, as well as the frequency of the wave.

On the instantaneous spreading for the Navier–Stokes system in the whole space

Lorenzo Brandolese, Yves Meyer (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the spatial behavior of the velocity field u ( x , t ) of a fluid filling the whole space n ( n 2 ) for arbitrarily small values of the time variable. We improve previous results on the spatial spreading by deducing the necessary conditions u h ( x , t ) u k ( x , t ) d x = c ( t ) δ h , k under more general assumptions on the localization of u . We also give some new examples of solutions which have a stronger spatial localization than in the generic case.

On the Instantaneous Spreading for the Navier–Stokes System in the Whole Space

Lorenzo Brandolese, Yves Meyer (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the spatial behavior of the velocity field u(x, t) of a fluid filling the whole space n ( n 2 ) for arbitrarily small values of the time variable. We improve previous results on the spatial spreading by deducing the necessary conditions u h ( x , t ) u k ( x , t ) d x = c ( t ) δ h , k under more general assumptions on the localization of u. We also give some new examples of solutions which have a stronger spatial localization than in the generic case.

Currently displaying 2101 – 2120 of 3679