L’élément -bulle/
Les équations de Dirac-Fock sont l’analogue relativiste des équations de Hartree-Fock. Elles sont utilisées dans les calculs numériques de la chimie quantique, et donnent des résultats sur les électrons dans les couches profondes des atomes lourds. Ces résultats sont en très bon accord avec les données expérimentales. Par une méthode variationnelle, nous montrons l’existence d’une infinité de solutions des équations de Dirac-Fock “sans projecteur", pour des systèmes coulombiens d’électrons dans...
Dans cet article, on étudie le système de Boussinesq décrivant le phénomène de convection dans un fluide incompressible et visqueux. Ce système est composé des équations de Navier-Stokes incompressibles avec un terme de force verticale dont l’amplitude est transportée sans dissipationpar le flot du champ de vitesses. On montre que les résultats classiques pour le système de Navier-Stokes standard demeurent vrais pour le système de Boussinesq bien qu’il n’y ait pas d’amortissement sur le terme de...
We give the definitions of exact and approximate controllability for linear and nonlinear Schrödinger equations, review fundamental criteria for controllability and revisit a classical “No-go” result for evolution equations due to Ball, Marsden and Slemrod. In Section 2 we prove corresponding results on non-controllability for the linear Schrödinger equation and distributed additive control, and we show that the Hartree equation of quantum chemistry with bilinear control is not controllable...
Les effets dispersifs permettent de passer à la limite dans le système d’Euler compressible 2-D isentropique, quand le nombre de Mach tend vers zéro, même si les données initiales ne sont pas uniformément régulières.Ceci mène à des résultats de convergence vers des solutions non régulières du système d’Euler incompressible, comme les poches de tourbillon ou les solutions de Yudovich.
L’objet de cette note est d’étudier la limite quasineutre des équations de Vlasov Poisson en dimension d’espace. Ceci inclut l’obtention de résultats d’existence pour le système limite ainsi que la preuve de la convergence.