Displaying 121 – 140 of 349

Showing per page

Solvability Conditions for a Linearized Cahn-Hilliard Equation of Sixth Order

V. Vougalter, V. Volpert (2012)

Mathematical Modelling of Natural Phenomena

We obtain solvability conditions in H6(ℝ3) for a sixth order partial differential equation which is the linearized Cahn-Hilliard problem using the results derived for a Schrödinger type operator without Fredholm property in our preceding article [18].

Solvability of a dynamic rational contact with limited interpenetration for viscoelastic plates

Jiří Jarušek (2020)

Applications of Mathematics

Solvability of the rational contact with limited interpenetration of different kind of viscolastic plates is proved. The biharmonic plates, von Kármán plates, Reissner-Mindlin plates, and full von Kármán systems are treated. The viscoelasticity can have the classical (``short memory'') form or the form of a certain singular memory. For all models some convergence of the solutions to the solutions of the Signorini contact is proved provided the thickness of the interpenetration tends to zero.

Solvability of a first order system in three-dimensional non-smooth domains

Michal Křížek, Pekka Neittaanmäki (1985)

Aplikace matematiky

A system of first order partial differential equations is studied which is defined by the divergence and rotation operators in a bounded nonsmooth domain Ω 𝐑 3 . On the boundary δ Ω , the vanishing normal component is prescribed. A variational formulation is given and its solvability is investigated.

Solvability of the stationary Stokes system in spaces H ² - μ , μ ∈ (0,1)

Ewa Zadrzyńska, Wojciech M. Zajączkowski (2010)

Applicationes Mathematicae

We consider the stationary Stokes system with slip boundary conditions in a bounded domain. Assuming that data functions belong to weighted Sobolev spaces with weights equal to some power of the distance to some distinguished axis, we prove the existence of solutions to the problem in appropriate weighted Sobolev spaces.

Solvability of two stationary free boundary problems for the Navier-Stokes equations

V. A. Solonnikov (1998)

Bollettino dell'Unione Matematica Italiana

Si studiano due problemi con frontiera libera per equazioni stazionarie di Navier-Stokes: il problema del movimento di un liquido viscoso incomprimibile generato dalla rotazione di una sbarra rigida immersa nel liquido con velocità angolare assegnata e il problema della fuoriuscita di un liquido da un tubo circolare nello spazio libero. Si assegna l'angolo di contatto tra la frontiera libera e la superficie del tubo e, nel secondo problema, il flusso totale del liquido attraverso l'apertura del...

Solving the Vlasov equation in complex geometries

J. Abiteboul, G. Latu, V. Grandgirard, A. Ratnani, E. Sonnendrücker, A. Strugarek (2011)

ESAIM: Proceedings

This paper introduces an isoparametric analysis to solve the Vlasov equation with a semi-Lagrangian scheme. A Vlasov-Poisson problem modeling a heavy ion beam in an axisymmetric configuration is considered. Numerical experiments are conducted on computational meshes targeting different geometries. The impact of the computational grid on the accuracy and the computational cost are shown. The use of analytical mapping or Bézier patches does not induce...

Some application of the implicit function theorem to the stationary Navier-Stokes equations

Konstanty Holly (1991)

Annales Polonici Mathematici

We prove that - in the case of typical external forces - the set of stationary solutions of the Navier-Stokes equations is the limit of the (full) sequence of sets of solutions of the appropriate Galerkin equations, in the sense of the Hausdorff metric (for every inner approximation of the space of velocities). Then the uniqueness of the N-S equations is equivalent to the uniqueness of almost every of these Galerkin equations.

Some constructive applications of Λ 2 -representations to integration of PDEs

A. Popov, S. Zadadaev (2000)

Annales Polonici Mathematici

Two new applications of Λ 2 -representations of PDEs are presented: 1. Geometric algorithms for numerical integration of PDEs by constructing planimetric discrete nets on the Lobachevsky plane Λ 2 . 2. Employing Λ 2 -representations for the spectral-evolutionary problem for nonlinear PDEs within the inverse scattering problem method.

Currently displaying 121 – 140 of 349