Displaying 101 – 120 of 714

Showing per page

Applications of limited information strategies in Menger's game

Steven Clontz (2017)

Commentationes Mathematicae Universitatis Carolinae

As shown by Telgársky and Scheepers, winning strategies in the Menger game characterize σ -compactness amongst metrizable spaces. This is improved by showing that winning Markov strategies in the Menger game characterize σ -compactness amongst regular spaces, and that winning strategies may be improved to winning Markov strategies in second-countable spaces. An investigation of 2-Markov strategies introduces a new topological property between σ -compact and Menger spaces.

Approximations of dynamic Nash games with general state and action spaces and ergodic costs for the players

Tomasz Bielecki (1997)

Applicationes Mathematicae

The purpose of this paper is to prove existence of an ε -equilib- rium point in a dynamic Nash game with Borel state space and long-run time average cost criteria for the players. The idea of the proof is first to convert the initial game with ergodic costs to an ``equivalent" game endowed with discounted costs for some appropriately chosen value of the discount factor, and then to approximate the discounted Nash game obtained in the first step with a countable state space game for which existence...

Axiomatization of values of cooperative games using a fairness property

Andrzej Młodak (2005)

Applicationes Mathematicae

We propose new systems of axioms which characterize four types of values of cooperative games: the Banzhaf value, the Deegan-Packel value, the least square prenucleolus and the least square nucleolus. The common element used in these axiomatizations is a fairness property. It requires that if to a cooperative game we add another game in which two given players are symmetric, then their payoffs change by the same amount. In our analysis we will use an idea applied by R. van den Brink (2001) to obtain...

Bad(s,t) is hyperplane absolute winning

Erez Nesharim, David Simmons (2014)

Acta Arithmetica

J. An proved that for any s,t ≥ 0 such that s + t = 1, Bad (s,t) is (34√2)¯¹-winning for Schmidt's game. We show that using the main lemma from [An] one can derive a stronger result, namely that Bad (s,t) is hyperplane absolute winning in the sense of [BFKRW]. As a consequence, one can deduce the full Hausdorff dimension of Bad (s,t) intersected with certain fractals.

Banach-Mazur game played in partially ordered sets

Wiesław Kubiś (2016)

Banach Center Publications

Concepts, definitions, notions, and some facts concerning the Banach-Mazur game are customized to a more general setting of partial orderings. It is applied in the theory of Fraïssé limits and beyond, obtaining simple proofs of universality of certain objects and classes.

Bayesian Nash equilibrium seeking for multi-agent incomplete-information aggregative games

Hanzheng Zhang, Huashu Qin, Guanpu Chen (2023)

Kybernetika

In this paper, we consider a distributed Bayesian Nash equilibrium (BNE) seeking problem in incomplete-information aggregative games, which is a generalization of either Bayesian games or deterministic aggregative games. We handle the aggregation function to adapt to incomplete-information situations. Since the feasible strategies are infinite-dimensional functions and lie in a non-compact set, the continuity of types brings barriers to seeking equilibria. To this end, we discretize the continuous...

Bilateral sequential bargaining with perfect information and different protocols

Robert Golański (2006)

Banach Center Publications

Most research done in the bargaining literature concentrates on the situations in which players get to be proposers alternately, with the first player being the proposer in the first period, the second player being the proposer in the second period, and so on until the cycle ends and the order of proposers is repeated. However, allowing for only this kind of order is a rather simplifying assumption. This paper looks at the situation in which we allow for much more general kind of protocols. We characterize...

Bi-personal stochastic transient Markov games with stopping times and total reward criterion

Martínez-Cortés Victor Manuel (2021)

Kybernetika

The article is devoted to a class of Bi-personal (players 1 and 2), zero-sum Markov games evolving in discrete-time on Transient Markov reward chains. At each decision time the second player can stop the system by paying terminal reward to the first player. If the system is not stopped the first player selects a decision and two things will happen: The Markov chain reaches next state according to the known transition law, and the second player must pay a reward to the first player. The first player...

Boundary-influenced robust controls: two network examples

Martin V. Day (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the differential game associated with robust control of a system in a compact state domain, using Skorokhod dynamics on the boundary. A specific class of problems motivated by queueing network control is considered. A constructive approach to the Hamilton-Jacobi-Isaacs equation is developed which is based on an appropriate family of extremals, including boundary extremals for which the Skorokhod dynamics are active. A number of technical lemmas and a structured verification theorem...

Currently displaying 101 – 120 of 714