Displaying 221 – 240 of 1536

Showing per page

Arithmetic of linear forms involving odd zeta values

Wadim Zudilin (2004)

Journal de Théorie des Nombres de Bordeaux

A general hypergeometric construction of linear forms in (odd) zeta values is presented. The construction allows to recover the records of Rhin and Viola for the irrationality measures of ζ ( 2 ) and ζ ( 3 ) , as well as to explain Rivoal’s recent result on infiniteness of irrational numbers in the set of odd zeta values, and to prove that at least one of the four numbers ζ ( 5 ) , ζ ( 7 ) , ζ ( 9 ) , and ζ ( 11 ) is irrational.

Arithmetic properties of positive integers with fixed digit sum.

Florian Luca (2006)

Revista Matemática Iberoamericana

In this paper, we look at various arithmetic properties of the set of those positive integers n whose sum of digits in a fixed base b > 1 is a fixed positive integer s. For example, we prove that such integers can have many prime factors, that they are not very smooth, and that most such integers have a large prime factor dividing the value of their Euler φ function.

Around the Littlewood conjecture in Diophantine approximation

Yann Bugeaud (2014)

Publications mathématiques de Besançon

The Littlewood conjecture in Diophantine approximation claims that inf q 1 q · q α · q β = 0 holds for all real numbers α and β , where · denotes the distance to the nearest integer. Its p -adic analogue, formulated by de Mathan and Teulié in 2004, asserts that inf q 1 q · q α · | q | p = 0 holds for every real number α and every prime number p , where | · | p denotes the p -adic absolute value normalized by | p | p = p - 1 . We survey the known results on these conjectures and highlight recent developments.

Automates finis et ensembles normaux

Christian Mauduit (1986)

Annales de l'institut Fourier

Soit u = ( u n ) n N une suite strictement croissante d’entiers reconnaissable par un automate fini. Nous montrons qu’une condition nécessaire et suffisante pour que l’ensemble normal associé a u soit exactement R Q est que l’un au moins des sommets qui reconnaît la suite u soit précédé dans le graphe de l’automate par un sommet possédant au moins deux circuits fermés distincts. Cette condition peut se traduire quantitativement en disant que la suite u doit être plus “dense” que toute suite exponentielle.

Automatic continued fractions are transcendental or quadratic

Yann Bugeaud (2013)

Annales scientifiques de l'École Normale Supérieure

We establish new combinatorial transcendence criteria for continued fraction expansions. Let  α = [ 0 ; a 1 , a 2 , ... ] be an algebraic number of degree at least three. One of our criteria implies that the sequence of partial quotients ( a ) 1 of  α is not ‘too simple’ (in a suitable sense) and cannot be generated by a finite automaton.

Autour de la conjecture de Zilber-Pink

Gaël Rémond (2009)

Journal de Théorie des Nombres de Bordeaux

Nous dressons un rapide panorama de résultats allant dans le sens de la conjecture suivante : l’intersection d’une sous-variété X d’une variété semi-abélienne A et de l’union de tous les sous-groupes algébriques de A de codimension au moins dim X + 1 n’est pas Zariski-dense dans X dès que X n’est pas contenue dans un sous-groupe algébrique strict de A .

Currently displaying 221 – 240 of 1536