Displaying 841 – 860 of 1538

Showing per page

On metric theory of Diophantine approximation for complex numbers

Zhengyu Chen (2015)

Acta Arithmetica

In 1941, R. J. Duffin and A. C. Schaeffer conjectured that for the inequality |α - m/n| < ψ(n)/n with g.c.d.(m,n) = 1, there are infinitely many solutions in positive integers m and n for almost all α ∈ ℝ if and only if n = 2 ϕ ( n ) ψ ( n ) / n = . As one of partial results, in 1978, J. D. Vaaler proved this conjecture under the additional condition ψ ( n ) = ( n - 1 ) . In this paper, we discuss the metric theory of Diophantine approximation over the imaginary quadratic field ℚ(√d) with a square-free integer d < 0, and show that a Vaaler...

On nodal sets and nodal domains on S 2 and 2

Alexandre Eremenko, Dmitry Jakobson, Nikolai Nadirashvili (2007)

Annales de l’institut Fourier

We discuss possible topological configurations of nodal sets, in particular the number of their components, for spherical harmonics on S 2 . We also construct a solution of the equation Δ u = u in 2 that has only two nodal domains. This equation arises in the study of high energy eigenfunctions.

On p -adic Euler constants

Abhishek Bharadwaj (2021)

Czechoslovak Mathematical Journal

The goal of this article is to associate a p -adic analytic function to the Euler constants γ p ( a , F ) , study the properties of these functions in the neighborhood of s = 1 and introduce a p -adic analogue of the infinite sum n 1 f ( n ) / n for an algebraic valued, periodic function f . After this, we prove the theorem of Baker, Birch and Wirsing in this setup and discuss irrationality results associated to p -adic Euler constants generalising the earlier known results in this direction. Finally, we define and prove certain...

On perfect powers in k -generalized Pell sequence

Zafer Şiar, Refik Keskin, Elif Segah Öztaş (2023)

Mathematica Bohemica

Let k 2 and let ( P n ( k ) ) n 2 - k be the k -generalized Pell sequence defined by P n ( k ) = 2 P n - 1 ( k ) + P n - 2 ( k ) + + P n - k ( k ) for n 2 with initial conditions P - ( k - 2 ) ( k ) = P - ( k - 3 ) ( k ) = = P - 1 ( k ) = P 0 ( k ) = 0 , P 1 ( k ) = 1 . In this study, we handle the equation P n ( k ) = y m in positive integers n , m , y , k such that k , y 2 , and give an upper bound on n . Also, we will show that the equation P n ( k ) = y m with 2 y 1000 has only one solution given by P 7 ( 2 ) = 13 2 .

On Popov's explicit formula and the Davenport expansion

Quan Yang, Jay Mehta, Shigeru Kanemitsu (2023)

Czechoslovak Mathematical Journal

We shall establish an explicit formula for the Davenport series in terms of trivial zeros of the Riemann zeta-function, where by the Davenport series we mean an infinite series involving a PNT (Prime Number Theorem) related to arithmetic function a n with the periodic Bernoulli polynomial weight B ¯ ϰ ( n x ) and PNT arithmetic functions include the von Mangoldt function, Möbius function and Liouville function, etc. The Riesz sum of order 0 or 1 gives the well-known explicit formula for respectively the partial...

Currently displaying 841 – 860 of 1538