Displaying 1341 – 1360 of 1712

Showing per page

Suite spectrale du coniveau et t -structure homotopique

Frédéric Déglise (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cette note, nous montrons que la suite spectrale du coniveau associée à un spectre motivique sur un corps parfait coïncide avec sa suite spectrale d’hypercohomologie pour la t-structure homotopique.

Sur la 2-cohomologie non abélienne des modèles réguliers des anneaux locaux henséliens

Jean-Claude Douai (2009)

Journal de Théorie des Nombres de Bordeaux

Soit A un anneau Notherien, local, Henselien, excellent, de corps résiduel k , k étant ou algébriquement clos de caractéristique 0 ou un corps fini, X S p e c A un morphisme propre dont la fibre spéciale X 0 S p e c A est de dimension au plus 1. Dans ce papier, nous complètons les résultats de [1] en montrant que si X est régulier et si L est un X e t -lien localement représentable par un groupe semi-simple simplement connexe, alors toutes les classes de H 2 ( X e t , L ) sont neutres. Prenant pour X un modèle régulier de A , nous montrons...

Sur la cohomologie de la compactification des variétés de Deligne-Lusztig

Haoran Wang (2014)

Annales de l’institut Fourier

Nous étudions la cohomologie de la compactification des variétés de Deligne-Lusztig associées aux éléments de Coxeter. Nous présentons une conjecture des relations entre la cohomologie de la variété et la cohomologie de ses compactifications partielles. Nous prouvons la conjecture dans le cas du groupe linéaire général.

Sur la convexité holomorphe. Théorie locale

A. Fabiano, P. Pietramala (1990)

Annales de l'institut Fourier

On définit une notion de convexité géométrique pour des ensembles ouverts de C n . On démontre des résultats de cohomologie locale précisant la topologie du dernier groupe de cohomologie non nul; la cohomologie considérée ici est la cohomologie de Dolbeault pour les formes différentielles.

Sur la première classe de Stiefel-Whitney de l’espace des applications stables réelles vers l’espace projectif

Nicolas Puignau (2010)

Annales de l’institut Fourier

L’espace de module des applications stables vers l’espace projectif possède naturellement une structure réelle dont la partie réelle est une variété projective normale. Cette dernière est un espace de module pour les courbes spatiales rationnelles réelles avec des points marqués réels. Puisque le lieu singulier est de codimension au moins deux, une première classe de Stiefel-Whitney est bien définie. Dans cet article nous déterminons un représentant pour la première classe de Stiefel-Whitney dans...

Sur le groupe des classes d’un schéma arithmétique

Bruno Kahn (2006)

Bulletin de la Société Mathématique de France

Nous donnons une démonstration du fait que le groupe des classes d’un schéma irréductible de type fini sur Spec 𝐙 est de type fini. Cette preuve ne repose pas sur le théorème de Mordell-Weil-Néron, mais plutôt sur le théorème de Mordell-Weil classique, le théorème de Néron-Severi et les théorèmes de Hironaka et de Jong sur la résolution des singularités. Nous en déduisons quelques corollaires, parmi lesquels le théorème de Mordell-Weil-Néron lui-même.

Sur le groupe fondamental des schémas analytiques de variété à une dimension

Willem T. van Est (1980)

Annales de l'institut Fourier

On démontre que tout schéma de variété analytique connexe et simplement connexe à une dimension est un arbre analytique, i.e. une variété analytique (non nécessairement séparée) dont chaque point est point de dissection. L’intégrabilité du groupe local des transitions maximales d’un arbre analytique complètement serré y intervient.Parmi les applications on trouve des résultats de Haefliger sur les feuilletages analytiques de co-dimension un ainsi que des généralisations des théorèmes de Denjoy-Siegel...

Currently displaying 1341 – 1360 of 1712