Displaying 21 – 40 of 43

Showing per page

Les espaces de Berkovich sont excellents

Antoine Ducros (2009)

Annales de l’institut Fourier

Dans ce texte, nous commençons par étudier les anneaux locaux d’un (bon) espace de Berkovich du point de vue de l’algèbre commutative  : nous montrons qu’ils sont excellents  ; nous nous intéressons au comportement de certaines de leurs propriétés éventuelles ( R m , S m , etc.) par extension des scalaires, et pour ce faire nous introduisons la notion d’extension analytiquement séparable d’un corps ultramétrique complet  ; nous établissons enfin à leur sujet des théorèmes de type GAGA pour les schémas...

Local and canonical heights of subvarieties

Walter Gubler (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Classical results of Weil, Néron and Tate are generalized to local heights of subvarieties with respect to hermitian pseudo-divisors. The local heights are well-defined if the intersection of supports is empty. In the archimedean case, the metrics are hermitian and the local heights are defined by a refined version of the * -product of Gillet-Soulé developped on compact varieties without assuming regularity. In the non-archimedean case, the local heights are intersection numbers using methods from...

Mesures de Mahler et équidistribution logarithmique

Antoine Chambert-Loir, Amaury Thuillier (2009)

Annales de l’institut Fourier

Soit X un schéma projectif intègre défini sur un corps de nombres  F  ; soit L un fibré en droites ample sur  X muni d’une métrique adélique semi-positive au sens de Zhang. Les résultats principaux de cet article sont :(1)Une formule qui calcule les hauteurs locales (relativement à  L ) d’un diviseur de Cartier sur  X comme des « mesures de Mahler » généralisées, c’est-à-dire les intégrales de fonctions de Green pour  D contre des mesures associées à  L  ;(2)Un théorème d’équidistribution des points de « petite »...

On component groups of Jacobians of Drinfeld modular curves

Mihran Papikian (2004)

Annales de l'Institut Fourier

Let J 0 ( 𝔫 ) be the Jacobian variety of the Drinfeld modular curve X 0 ( 𝔫 ) over 𝔽 q ( t ) , where 𝔫 is an ideal in 𝔽 q [ t ] . Let 0 B J 0 ( 𝔫 ) A 0 be an exact sequence of abelian varieties. Assume B , as a subvariety of J 0 ( 𝔫 ) , is stable under the action of the Hecke algebra 𝕋 End ( J 0 ( 𝔫 ) ) . We give a criterion which is sufficient for the exactness of the induced sequence of component groups 0 Φ B , Φ J , Φ A , 0 of the Néron models of these abelian varieties over 𝔽 q [ [ 1 t ] ] . This criterion is always satisfied when either A or B is one-dimensional. Moreover, we prove that the sequence...

On non-basic Rapoport-Zink spaces

Elena Mantovan (2008)

Annales scientifiques de l'École Normale Supérieure

In this paper we study certain moduli spaces of Barsotti-Tate groups constructed by Rapoport and Zink as local analogues of Shimura varieties. More precisely, given an isogeny class of Barsotti-Tate groups with unramified additional structures, we investigate how the associated (non-basic) moduli spaces compare to the (basic) moduli spaces associated with its isoclinic constituents. This aspect of the geometry of the Rapoport-Zink spaces is closely related to Kottwitz’s prediction that their l -adic...

On the infinite fern of Galois representations of unitary type

Gaëtan Chenevier (2011)

Annales scientifiques de l'École Normale Supérieure

Let E be a CM number field, p an odd prime totally split in  E , and let  X be the p -adic analytic space parameterizing the isomorphism classes of  3 -dimensional semisimple p -adic representations of  Gal ( E ¯ / E ) satisfying a selfduality condition “of type U ( 3 ) ”. We study an analogue of the infinite fern of Gouvêa-Mazur in this context and show that each irreducible component of the Zariski-closure of the modular points in  X has dimension at least 3 [ E : ] . As important steps, and in any rank, we prove that any first order...

Points rationnels et groupes fondamentaux : applications de la cohomologie p -adique

Antoine Chambert-loir (2002/2003)

Séminaire Bourbaki

Je présenterai des résultats de T. Ekedahl et H. Esnault sur les variétés projectives lisses sur un corps de caractéristique strictement positive, disons p , dont deux points peuvent être liés par une chaîne de courbes rationnelles, par exemple faiblement unirationnelles, ou de Fano. Notamment : 1) sur un corps fini, de telles variétés ont un point rationnel, résultat qui généralise le théorème de Chevalley-Warning ; 2) sur un corps algébriquement clos, de telles variétés ont un groupe fondamental...

Prime to p fundamental groups and tame Galois actions

Mark Kisin (2000)

Annales de l'institut Fourier

We show that for a local, discretely valued field F , with residue characteristic p , and a variety 𝒰 over F , the map ρ : Gal ( F sep / F ) Out ( π 1 , geom ( p ' ) ( 𝒰 ) ) to the outer automorphisms of the prime to p geometric étale fundamental group of 𝒰 maps the wild inertia onto a finite image. We show that under favourable conditions ρ depends only on the reduction of 𝒰 modulo a power of the maximal ideal of F . The proofs make use of the theory of logarithmic schemes.

Relative ampleness in rigid geometry

Brian Conrad (2006)

Annales de l’institut Fourier

We develop a rigid-analytic theory of relative ampleness for line bundles and record some applications to faithfully flat descent for morphisms and proper geometric objects. The basic definition is fibral, but pointwise arguments from the algebraic and complex-analytic cases do not apply, so we use cohomological properties of formal schemes over completions of local rings on rigid spaces. An analytic notion of quasi-coherence is introduced so that we can recover a proper object from sections of...

Représentations localement analytiques de GL 3 ( p )

Benjamin Schraen (2011)

Annales scientifiques de l'École Normale Supérieure

Nous construisons un complexe de représentations localement analytiques de GL 3 ( p ) , associé à certaines représentations semi-stables de dimension 3 du groupe de Galois absolu de p . Nous montrons ensuite que l’on peut retrouver le ( ϕ , N ) -module filtré de la représentation galoisienne en considérant les morphismes, dans la catégorie dérivée des D ( GL 3 ( p ) ) -modules, de ce complexe dans le complexe de de Rham de l’espace de Drinfel’d de dimension 2 . La preuve requiert le calcul de certains espaces de cohomologie localement...

Représentations potentiellement triangulines de dimension 2

Laurent Berger, Gaëtan Chenevier (2010)

Journal de Théorie des Nombres de Bordeaux

Les deux résultats principaux de cette note sont d’une part que si V est une représentation de Gal ( Q ¯ p / Q p ) de dimension 2 qui est potentiellement trianguline, alors V vérifie au moins une des propriétés suivantes (1) V est trianguline déployée (2) V est une somme de caractères ou une induite (3) V est une représentation de de Rham tordue par un caractère, et d’autre part qu’il existe des représentations de Gal ( Q ¯ p / Q p ) de dimension 2 qui ne sont pas potentiellement triangulines.

Currently displaying 21 – 40 of 43