Displaying 41 – 60 of 108

Showing per page

Some examples of 5 and 7 descent for elliptic curves over Q

Tom Fisher (2001)

Journal of the European Mathematical Society

We perform descent calculations for the families of elliptic curves over Q with a rational point of order n = 5 or 7. These calculations give an estimate for the Mordell-Weil rank which we relate to the parity conjecture. We exhibit explicit elements of the Tate-Shafarevich group of order 5 and 7, and show that the 5-torsion of the Tate-Shafarevich group of an elliptic curve over Q may become arbitrarily large.

Some new directions in p -adic Hodge theory

Kiran S. Kedlaya (2009)

Journal de Théorie des Nombres de Bordeaux

We recall some basic constructions from p -adic Hodge theory, then describe some recent results in the subject. We chiefly discuss the notion of B -pairs, introduced recently by Berger, which provides a natural enlargement of the category of p -adic Galois representations. (This enlargement, in a different form, figures in recent work of Colmez, Bellaïche, and Chenevier on trianguline representations.) We also discuss results of Liu that indicate that the formalism of Galois cohomology, including Tate...

Spherical roots of spherical varieties

Friedrich Knop (2014)

Annales de l’institut Fourier

Brion proved that the valuation cone of a complex spherical variety is a fundamental domain for a finite reflection group, called the little Weyl group. The principal goal of this paper is to generalize this theorem to fields of characteristic unequal to 2. We also prove a weaker version which holds in characteristic 2, as well. Our main tool is a generalization of Akhiezer’s classification of spherical varieties of rank 1.

Currently displaying 41 – 60 of 108