Displaying 1061 – 1080 of 1550

Showing per page

Quartic del Pezzo surfaces over function fields of curves

Brendan Hassett, Yuri Tschinkel (2014)

Open Mathematics

We classify quartic del Pezzo surface fibrations over the projective line via numerical invariants, giving explicit examples for small values of the invariants. For generic such fibrations, we describe explicitly the geometry of spaces of sections to the fibration, and mappings to the intermediate Jacobian of the total space. We exhibit examples where these are birational, which has applications to arithmetic questions, especially over finite fields.

Quelques propriétés arithmétiques des points de 3 -division de la jacobienne de y 2 = x 5 - 1

J. Boxall, E. Bavencoffe (1992)

Journal de théorie des nombres de Bordeaux

Soit C la courbe projective lisse et irréductible, définie sur Q , et dont un modèle affine est donné par y 2 = x 5 - 1 . On désigne par l’unique point de C qui n’est pas contenu dans cette partie affine. Soit J la jacobienne de C et soit φ : C 2 J le morphisme associant à chaque couple ( ξ , η ) de points de C la classe du diviseur [ ξ ] + [ η ] - 2 [ ] dans Pic 0 C . Soient u , v , f les trois fonctions rationnelles sur J définies par u φ ( ξ , η ) = x ( ξ ) + x ( η ) , v φ ( ξ , η ) = x ( ξ ) x ( η ) , f = - u + v + 1 Le but de cet article est de montrer que pour tout point P de 3 -division non nul de J , u ( P ) et v ( P ) sont des entiers algébriques...

Quelques questions d’approximation faible pour les tores algébriques

Jean-Louis Colliot-Thélène, Venapally Suresh (2007)

Annales de l’institut Fourier

Soient K un corps global, T un K -tore, S un ensemble fini de places de K . On note K v le complété de K en v S . Soit T ( K ) , resp. T ( K v ) , le groupe des points K -rationnels, resp. K v -rationnels, de T . Notons T ( O v ) T ( K v ) le sous-groupe compact maximal. Nous montrons que pour T et S convenables l’application T ( K ) v S T ( K v ) / T ( O v ) induite par l’application diagonale n’est pas surjective. Cela implique que pour v convenable le groupe T ( O v ) ne couvre pas forcément toutes les classes de R -équivalence de T ( K v ) . Lorsque K est un corps de fonctions d’une variable...

R -équivalence sur les familles de variétés rationnelles et méthode de la descente

Alena Pirutka (2012)

Journal de Théorie des Nombres de Bordeaux

La méthode de la descente a été introduite et développée par Colliot-Thélène et Sansuc. Elle permet d’étudier l’arithmétique de certaines variétés rationnelles. Dans ce texte on montre comment il en résulte que pour certaines familles f : X Y de variétés rationnelles sur un corps local k de caractéristique nulle le nombre des classes de R -équivalence de la fibre X y ( k ) est localement constant quand y varie dans Y ( k ) .

Currently displaying 1061 – 1080 of 1550