Displaying 161 – 180 of 1550

Showing per page

Borne polynomiale pour le nombre de points rationnels des courbes

Gaël Rémond (2011)

Journal de Théorie des Nombres de Bordeaux

Soit F un polynôme en deux variables, de degré D et à coefficients entiers dans [ - M , M ] pour M 3 . Alors le nombre de zéros rationnels de F est soit infini soit plus petit que M 2 3 D 2 . Nous montrons aussi une version plus générale sur les corps de nombres.

Bruhat-Tits theory from Berkovich’s point of view. I. Realizations and compactifications of buildings

Bertrand Rémy, Amaury Thuillier, Annette Werner (2010)

Annales scientifiques de l'École Normale Supérieure

We investigate Bruhat-Tits buildings and their compactifications by means of Berkovich analytic geometry over complete non-Archimedean fields. For every reductive group G over a suitable non-Archimedean field k we define a map from the Bruhat-Tits building ( G , k ) to the Berkovich analytic space G an associated with G . Composing this map with the projection of G an to its flag varieties, we define a family of compactifications of ( G , k ) . This generalizes results by Berkovich in the case of split groups. Moreover,...

Canonical integral structures on the de Rham cohomology of curves

Bryden Cais (2009)

Annales de l’institut Fourier

For a smooth and proper curve X K over the fraction field K of a discrete valuation ring R , we explain (under very mild hypotheses) how to equip the de Rham cohomology H dR 1 ( X K / K ) with a canonical integral structure: i.e., an R -lattice which is functorial in finite (generically étale) K -morphisms of X K and which is preserved by the cup-product auto-duality on H dR 1 ( X K / K ) . Our construction of this lattice uses a certain class of normal proper models of X K and relative dualizing sheaves. We show that our lattice naturally...

Characteres and Galois invariants of regular dessins.

Manfred Streit, Jürgen Wolfart (2000)

Revista Matemática Complutense

We describe a new invariant for the action of the absolute Galois groups on the set of Grothendieck dessins. It uses the fact that the automorphism groups of regular dessins are isomorphic to automorphism groups of the corresponding Riemman surfaces and define linear represenatations of the space of holomorphic differentials. The characters of these representations give more precise information about the action of the Galois group than all previously known invariants, as it is shown by a series...

Characters of the Grothendieck-Teichmüller group through rigidity of the Burau representation

Ivan Marin (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

We present examples of characters of absolute Galois groups of number fields that can be recovered through their action by automorphisms on the profinite completion of the braid groups, using a “rigidity” approach. The way we use to recover them is through classical representations of the braid groups, and in particular through the Burau representation. This enables one to extend these characters to Grothendieck-Teichmüller groups.

Classe de conjugaison du frobenius des variétés abéliennes à réduction ordinaire

Rutger Noot (1995)

Annales de l'institut Fourier

Soient X une variété abélienne sur un corps de nombres E et G son groupe de Mumford–Tate. Soit v une valuation de E et pour tout nombre premier tel que v ( ) = 0 , soit F G ( Q ) l’automorphisme de Frobenius (géométrique) de la cohomologie étale -adique de X . On montre que si X a une bonne réduction ordinaire en v , alors il existe F G ( Q ) tel que, pour tout , F soit conjugué à F dans G ( Q ) . On montre un résultat analogue pour le frobenius de la cohomologie cristalline de la réduction de X modulo v .

Currently displaying 161 – 180 of 1550