Displaying 241 – 260 of 601

Showing per page

Local boundedness for minimizers of variational integrals under anisotropic nonstandard growth conditions

Zesheng Feng, Aiping Zhang, Hongya Gao (2024)

Czechoslovak Mathematical Journal

This paper deals with local boundedness for minimizers of vectorial integrals under anisotropic growth conditions by using De Giorgi’s iterative method. We consider integral functionals with the first part of the integrand satisfying anisotropic growth conditions including a convex nondecreasing function g , and with the second part, a convex lower order term or a polyconvex lower order term. Local boundedness of minimizers is derived.

Local Lipschitz continuity of solutions of non-linear elliptic differential-functional equations

Pierre Bousquet (2007)

ESAIM: Control, Optimisation and Calculus of Variations

The object of this paper is to prove existence and regularity results for non-linear elliptic differential-functional equations of the form div a ( u ) + F [ u ] ( x ) = 0 , over the functions u W 1 , 1 ( Ω ) that assume given boundary values ϕ on ∂Ω. The vector field a : n n satisfies an ellipticity condition and for a fixed x, F[u](x) denotes a non-linear functional of u. In considering the same problem, Hartman and Stampacchia [Acta Math.115 (1966) 271–310] have obtained existence results in the space of uniformly Lipschitz continuous functions...

Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint

Ayman Kachmar (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is devoted to an analysis of vortex-nucleation for a Ginzburg-Landau functional with discontinuous constraint. This functional has been proposed as a model for vortex-pinning, and usually accounts for the energy resulting from the interface of two superconductors. The critical applied magnetic field for vortex nucleation is estimated in the London singular limit, and as a by-product, results concerning vortex-pinning and boundary conditions on the interface are obtained.

Mathematical modeling of time-harmonic aeroacoustics with a generalized impedance boundary condition

Eric Luneville, Jean-Francois Mercier (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study the time-harmonic acoustic scattering in a duct in presence of a flow and of a discontinuous impedance boundary condition. Unlike a continuous impedance, a discontinuous one leads to still open modeling questions, as in particular the singularity of the solution at the abrupt transition and the choice of the right unknown to formulate the scattering problem. To address these questions we propose a mathematical approach based on variational formulations set in weighted Sobolev spaces. Considering...

Mean curvature properties for p -Laplace phase transitions

Berardino Sciunzi, Enrico Valdinoci (2005)

Journal of the European Mathematical Society

This paper deals with phase transitions corresponding to an energy which is the sum of a kinetic part of p -Laplacian type and a double well potential h 0 with suitable growth conditions. We prove that level sets of solutions of Δ p u = h 0 ' ( u ) possessing a certain decay property satisfy a mean curvature equation in a suitable weak viscosity sense. From this, we show that, if the above level sets approach uniformly a hypersurface, the latter has zero mean curvature.

Metodi variazionali e topologici nello studio delle equazioni di Schrödinger nonlineari agli stati stazionari

Silvia Cingolani (2001)

Bollettino dell'Unione Matematica Italiana

In the present paper we survey some recents results concerning existence of semiclassical standing waves solutions for nonlinear Schrödinger equations. Furthermore, from Maxwell's equations we derive a nonlinear Schrödinger equation which represents a model of propagation of an electromagnetic field in optical waveguides.

Currently displaying 241 – 260 of 601