Displaying 81 – 100 of 206

Showing per page

Soluzioni periodiche di PDEs Hamiltoniane

Massimiliano Berti (2004)

Bollettino dell'Unione Matematica Italiana

Presentiamo nuovi risultati di esistenza e molteplicità di soluzioni periodiche di piccola ampiezza per equazioni alle derivate parziali Hamiltoniane. Otteniamo soluzioni periodiche di equazioni «completamente risonanti» aventi nonlinearità generali grazie ad una riduzione di tipo Lyapunov-Schmidt variazionale ed usando argomenti di min-max. Per equazioni «non risonanti» dimostriamo l'esistenza di soluzioni periodiche di tipo Birkhoff-Lewis, mediante un'opportuna forma normale di Birkhoff e realizzando...

Solving elastodynamic problems of 2D quasicrystals in inhomogeneous media

Meltem Altunkaynak (2024)

Applications of Mathematics

Initial value problem for three dimensional (3D) elastodynamic system in two dimensional (2D) inhomogeneous quasicrystals is considered. An analytical method is studied for the solution of this problem. The system is written in terms of Fourier images of displacements with respect to lateral variables. The resulting problem is reduced to integral equations of the Volterra type. Finally, using Paley Wiener theorem it is shown that the solution of the initial value problem can be found by the inverse...

Some common asymptotic properties of semilinear parabolic, hyperbolic and elliptic equations

Peter Poláčik (2002)

Mathematica Bohemica

We consider three types of semilinear second order PDEs on a cylindrical domain Ω × ( 0 , ) , where Ω is a bounded domain in N , N 2 . Among these, two are evolution problems of parabolic and hyperbolic types, in which the unbounded direction of Ω × ( 0 , ) is reserved for time t , the third type is an elliptic equation with a singled out unbounded variable t . We discuss the asymptotic behavior, as t , of solutions which are defined and bounded on Ω × ( 0 , ) .

Some decay properties for the damped wave equation on the torus

Nalini Anantharaman, Matthieu Léautaud (2012)

Journées Équations aux dérivées partielles

This article is a proceedings version of the ongoing work [1], and has been the object of a talk of the second author during the Journées “Équations aux Dérivées Partielles” (Biarritz, 2012).We address the decay rates of the energy of the damped wave equation when the damping coefficient b does not satisfy the Geometric Control Condition (GCC). First, we give a link with the controllability of the associated Schrödinger equation. We prove that the observability of the Schrödinger group implies that...

Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles*

C. Pozzolini, M. Salaun (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Caused by the problem of unilateral contact during vibrations of satellite solar arrays, the aim of this paper is to better understand such a phenomenon. Therefore, it is studied here a simplified model composed by a beam moving between rigid obstacles. Our purpose is to describe and compare some families of fully discretized approximations and their properties, in the case of non-penetration Signorini's conditions. For this, starting from the works of Dumont and Paoli, we adapt to our beam...

Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles*

C. Pozzolini, M. Salaun (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Caused by the problem of unilateral contact during vibrations of satellite solar arrays, the aim of this paper is to better understand such a phenomenon. Therefore, it is studied here a simplified model composed by a beam moving between rigid obstacles. Our purpose is to describe and compare some families of fully discretized approximations and their properties, in the case of non-penetration Signorini's conditions. For this, starting from the works of Dumont and Paoli, we adapt to our beam...

Some new error estimates for finite element methods for second order hyperbolic equations using the Newmark method

Abdallah Bradji, Jürgen Fuhrmann (2014)

Mathematica Bohemica

We consider a family of conforming finite element schemes with piecewise polynomial space of degree k in space for solving the wave equation, as a model for second order hyperbolic equations. The discretization in time is performed using the Newmark method. A new a priori estimate is proved. Thanks to this new a priori estimate, it is proved that the convergence order of the error is h k + τ 2 in the discrete norms of ( 0 , T ; 1 ( Ω ) ) and 𝒲 1 , ( 0 , T ; 2 ( Ω ) ) , where h and τ are the mesh size of the spatial and temporal discretization, respectively....

Some new results in multiphase geometrical optics

Olof Runborg (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In order to accommodate solutions with multiple phases, corresponding to crossing rays, we formulate geometrical optics for the scalar wave equation as a kinetic transport equation set in phase space. If the maximum number of phases is finite and known a priori we can recover the exact multiphase solution from an associated system of moment equations, closed by an assumption on the form of the density function in the kinetic equation. We consider two different closure assumptions based on delta...

Currently displaying 81 – 100 of 206