Some non-linear s. p. d. e's that are second order in time.
We study several regularizing methods, stationary phase or averaging lemmas for instance. Depending on the regularity assumptions that are made, we show that they can either be derived one from the other or that they lead to different results. Those are applied to Scalar Conservation Laws to precise and better explain the regularity of their solutions.
This note is concerned with the Cauchy problem for hyperbolic systems of conservation laws in several space dimensions. We first discuss an example of ill-posedness, for a special system having a radial symmetry property. Some conjectures are formulated, on the compactness of the set of flow maps generated by vector fields with bounded variation.
We consider hyperbolic systems with time dependent coefficients and size or . We give some sufficient conditions in order the Cauchy Problem to be well-posed in and in Gevrey spaces.
We discuss a control problem for the Lamé system which naturally leads to the following uniqueness problem: Given a bounded domain of , are there non-trivial solutions of the evolution Lamé system with homogeneous Dirichlet boundary conditions for which the first two components vanish? We show that such solutions do not exist when the domain is Lipschitz. However, in two space dimensions one can build easily polygonal domains in which there are eigenvibrations with the first component being identically...
On se propose d’étudier la stabilité d’une poutre flexible homogène, encastrée à une extrémité. À l’autre extrémité est attachée une masse ponctuelle où on applique un moment proportionnel à la vitesse de déplacement angulaire. On montre par une analyse spectrale que le taux optimal de décroissance de l’énergie est déterminé par l’abscisse spectrale du générateur infinitésimal du semi-groupe associé au problème.
We study the stability of a flexible beam clamped at one end. A mass is attached at the other end, where a control moment is applied. The boundary control is proportional to the angular velocity at the end. By spectral analysis, we prove that the optimal decay rate of the energy is given by the spectrum of the generator of the semigroup associated to the system.