Hardy-type estimates for Dirac operators
In this preliminary Note we outline some results of the forthcoming paper [11], concerning positive solutions of the equation . A parabolic Harnack inequality is proved, which in particular implies a sharp two-sided estimate for the associated heat kernel. Our approach relies on the unitary equivalence of the Schrödinger operator with the opposite of the weighted Laplacian when .
We derive the high frequency limit of the Helmholtz equations in terms of quadratic observables. We prove that it can be written as a stationary Liouville equation with source terms. Our method is based on the Wigner Transform, which is a classical tool for evolution dispersive equations. We extend its use to the stationary case after an appropriate scaling of the Helmholtz equation. Several specific difficulties arise here; first, the identification of the source term ( which does not share the...
We describe hypergeometric solutions of the quantum differential equation of the cotangent bundle of a partial flag variety. These hypergeometric solutions manifest the Landau-Ginzburg mirror symmetry for the cotangent bundle of a partial flag variety.
We derive estimates for various quantities which are of interest in the analysis of the Ginzburg-Landau equation, and which we bound in terms of the -energy and the parameter . These estimates are local in nature, and in particular independent of any boundary condition. Most of them improve and extend earlier results on the subject.
On étudie un opérateur de la forme sur , où est un potentiel admettant plusieurs pôles en . Plus précisément, on démontre l’estimation de résolvante tronquée à hautes fréquences, classique dans les cas non-captifs, et qui implique l’effet régularisant standard pour l’équation de Schrödinger correspondante. La preuve est basée sur l’introduction d’une mesure de défaut micro-locale semi-classique. On démontre également, dans le même contexte, des inégalités de Strichartz pour l’équation de Schrödinger....
This paper considers the existence and uniqueness of the solution to the initial boundary value problem for a class of generalized Zakharov equations in dimensions, and proves the global existence of the solution to the problem by a priori integral estimates and the Galerkin method.
This work is concerned with the proof of decay estimates for solutions of the Cauchy problem for the Klein-Gordon type equation . The coefficient consists of an increasing smooth function and an oscillating smooth and bounded function b which are uniformly separated from zero. Moreover, is a positive constant. We study under which assumptions for λ and b one can expect as an essential part of the decay rate the classical Klein-Gordon decay rate n/2(1/p-1/q).
Les équations de Dirac-Fock sont l’analogue relativiste des équations de Hartree-Fock. Elles sont utilisées dans les calculs numériques de la chimie quantique, et donnent des résultats sur les électrons dans les couches profondes des atomes lourds. Ces résultats sont en très bon accord avec les données expérimentales. Par une méthode variationnelle, nous montrons l’existence d’une infinité de solutions des équations de Dirac-Fock “sans projecteur", pour des systèmes coulombiens d’électrons dans...