Displaying 301 – 320 of 349

Showing per page

Supplementary balance laws for Cattaneo heat propagation

Serge Preston (2013)

Communications in Mathematics

In this work we determine for the Cattaneo heat propagation system all the supplementary balance laws (shortly SBL) of the same order (zero) as the system itself and extract the constitutive relations (expression for the internal energy) dictated by the Entropy Principle. The space of all supplementary balance laws (having the functional dimension 8) contains four original balance laws and their deformations depending on 4 functions of temperature ( λ 0 ( ϑ ) , K A ( ϑ ) , A = 1 , 2 , 3 ). The requirements of the II law of thermodynamics...

Sur la théorie globale des équations de Navier-Stokes compressible

Didier Bresch, Benoît Desjardins (2006)

Journées Équations aux dérivées partielles

Le but de cet article est de présenter quelques résultats mathématiques plus ou moins récents sur la théorie de l’existence globale en temps (solutions faibles et solutions fortes) pour les équations de Navier-Stokes compressibles en dimension supérieure ou égale à deux sans aucune hypothèse de symétrie sur le domaine et sans aucune hypothèse sur la taille des données initiales.

Sur le spectre semi-classique d’un système intégrable de dimension 1 autour d’une singularité hyperbolique

Olivier Lablée (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cette article on décrit le spectre semi-classique d’un opérateur de Schrödinger sur avec un potentiel type double puits. La description qu’on donne est celle du spectre autour du maximum local du potentiel. Dans la classification des singularités de l’application moment d’un système intégrable, le double puits représente le cas des singularités non-dégénérées de type hyperbolique.

Sur le système de Nernst-Planck-Poisson-Boltzmann résultant de l’homogénéisation par convergence à double échelle

Gérard Gagneux, Olivier Millet (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Le système d’évolution de Nernst-Planck-Poisson-Boltzmann modélise les transferts ioniques en milieu poreux saturé en prenant en compte des interactions électrocapillaires au contact du substrat. Ce modèle présente un intérêt particulier en génie civil pour étudier la dégradation par corrosion des matériaux cimentaires, à structure micro-locale périodique, sous l’effet des ions chlorures. Les techniques d’homogénéisation sont alors un outil puissant pour élaborer un modèle macroscopique équivalent...

Sur le temps de vie de la turbulence bidimensionnelle

Thierry Gallay, Luis Miguel Rodrigues (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

On sait que toutes les solutions de l’équation de Navier-Stokes dans R 2 dont le tourbillon est intégrable convergent lorsque t vers un écoulement autosimilaire appelé tourbillon d’Oseen. Dans cet article, nous donnons une estimation du temps nécessaire à la solution pour atteindre un voisinage du tourbillon d’Oseen à partir d’une donnée initiale arbitraire, mais bien localisée en espace. Nous obtenons ainsi une borne supérieure sur le temps de vie de la turbulence bidimensionnelle libre, en fonction...

Sur l'équation de Ginzburg-Landau avec champ magnétique

Sylvia Serfaty (1998)

Journées équations aux dérivées partielles

On étudie la fonctionnelle d’énergie de Ginzburg-Landau J ( u , A ) = 1 2 Ω | A u | 2 + | h - h e x | 2 + κ 2 2 ( 1 - | u | 2 ) 2 , qui modélise les supraconducteurs cylindriques soumis à un champ magnétique extérieur h e x , dans l’asymptotique κ . On trouve et on décrit des branches de solutions stables des équations associées. On a une estimation sur la valeur critique H c 1 ( κ ) de h e x correspondant à une «transition de phase» où des vortex (c.à.d. zéros de u ) deviennent énergétiquement favorables. On obtient également dans le cas d’un disque, que pour h e x H c 1 comme pour h e x H c 1 , il existe à la...

Sur l’équation de Prandtl

David Gérard-Varet, Emmanuel Dormy (2008/2009)

Séminaire Équations aux dérivées partielles

L’objet de cette note est le problème de Cauchy pour l’équation de Prandtl, dans des espaces de régularité Sobolev. Nous discutons de façon synthétique des résultats récents [4], établissant le caractère fortement linéairement mal posé de ce problème.

Sur les mesures de Wigner.

Pierre-Louis Lions, Thierry Paul (1993)

Revista Matemática Iberoamericana

We study the properties of the Wigner transform for arbitrary functions in L2 or for hermitian kernels like the so-called density matrices. And we introduce some limits of these transforms for sequences of functions in L2, limits that correspond to the semi-classical limit in Quantum Mechanics. The measures we obtain in this way, that we call Wigner measures, have various mathematical properties that we establish. In particular, we prove they satisfy, in linear situations (Schrödinger equations)...

Currently displaying 301 – 320 of 349