The limiting amplitude principle applied to the motion of floating bodies
The mathematical theory of the passage from compressible to incompressible fluid flow is reviewed.
The mathematical theory of the passage from compressible to incompressible fluid flow is reviewed.
This short course explains how the usual mean-field evolution PDEs in Statistical Physics - such as the Vlasov-Poisson, Schrödinger-Poisson or time-dependent Hartree-Fock equations - are rigorously derived from first principles, i.e. from the fundamental microscopic models that govern the evolution of large, interacting particle systems.
We consider the Euler equations for compressible fluids in a nozzle whose cross-section is variable and may contain discontinuities. We view these equations as a hyperbolic system in nonconservative form and investigate weak solutions in the sense of Dal Maso, LeFloch and Murat [J. Math. Pures Appl.74 (1995) 483–548]. Observing that the entropy equality has a fully conservative form, we derive a minimum entropy principle satisfied by entropy solutions. We then establish the stability of a class...
The electronic Schrödinger equation describes the motion of N electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, three spatial dimensions for each electron. Approximating them is thus inordinately challenging. As is shown in the author's monograph [Yserentant, Lecture Notes in Mathematics 2000, Springer (2010)], the regularity of the solutions, which increases with the number of electrons,...
The electronic Schrödinger equation describes the motion of N electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, three spatial dimensions for each electron. Approximating them is thus inordinately challenging. As is shown in the author's monograph [Yserentant, Lecture Notes in Mathematics2000, Springer (2010)], the regularity of the solutions, which increases with the number of electrons,...
We consider a free boundary value problem for a viscous, incompressible fluid contained in an uncovered three-dimensional rectangular channel, with gravity and surface tension, governed by the Navier-Stokes equations. We obtain existence results for the linear and nonlinear time-dependent problem. We analyse the qualitative behavior of the flow using tools of bifurcation theory. The main result is a Hopf bifurcation theorem with -symmetry.
We formulate a boundary value problem for the Navier-Stokes equations with prescribed u·n, curl u·n and alternatively (∂u/∂n)·n or curl²u·n on the boundary. We deal with the question of existence of a steady weak solution.