Spaces related to gamma-sets
In the present paper, a general multiobjective optimization problem is stated as a Nash game. In the nonrestrictive case of two objectives, we address the problem of the splitting of the design variable between the two players. The so-called territory splitting problem is solved by means of an allocative approach. We propose two algorithms in order to find fair allocation tables
We survey several mechanisms supporting the maintenance of cooperation for evolutionary Prisoner's Dilemma games. In these models players are located on the sites of a lattice or graph and they can follow one of the pure strategies: cooperation (C) or defection (D). Their total income comes from Prisoner's Dilemma games with their neighbors. We discuss the consequences of different evolutionary rules determining the time-dependence of the strategy distribution and compare the results of spreading...
If Nonempty has a winning strategy against Empty in the Choquet game on a space, the space is said to be a Choquet space. Such a winning strategy allows Nonempty to consider the entire finite history of previous moves before making each new move; a stationary strategy only permits Nonempty to consider the previous move by Empty. We show that Nonempty has a stationary winning strategy for every second-countable T₁ Choquet space. More generally, Nonempty has a stationary winning strategy for...
The paper solves the problem of minimization of the Kullback divergence between a partially known and a completely known probability distribution. It considers two probability distributions of a random vector on a sample space of dimensions. One of the distributions is known, the other is known only partially. Namely, only the conditional probability distributions of given are known for . Our objective is to determine the remaining conditional probability distributions of given such...
A zero-sum stochastic differential game problem on infinite horizon with continuous and impulse controls is studied. We obtain the existence of the value of the game and characterize it as the unique viscosity solution of the associated system of quasi-variational inequalities. We also obtain a verification theorem which provides an optimal strategy of the game.
A zero-sum stochastic differential game problem on infinite horizon with continuous and impulse controls is studied. We obtain the existence of the value of the game and characterize it as the unique viscosity solution of the associated system of quasi-variational inequalities. We also obtain a verification theorem which provides an optimal strategy of the game.
We compare two concepts of stochastic stability in spatial games. The classical approach to stochastic stability, introduced by Foster and Young [8], involves single configurations in the zero-noise limit. Ensemble stability discussed in [17] refers to ensembles of configurations in the limit of an infinite number of players. The above two limits may not commute. We will discuss reasons of such behaviour. We review some results concerning the effect of the number of players and the noise level on...