Displaying 41 – 60 of 81

Showing per page

Some remarks on equilibria in semi-Markov games

Andrzej Nowak (2000)

Applicationes Mathematicae

This paper is a first study of correlated equilibria in nonzero-sum semi-Markov stochastic games. We consider the expected average payoff criterion under a strong ergodicity assumption on the transition structure of the games. The main result is an extension of the correlated equilibrium theorem proven for discounted (discrete-time) Markov games in our joint paper with Raghavan. We also provide an existence result for stationary Nash equilibria in the limiting average payoff semi-Markov games with...

Some values for constant-sum and bilateral cooperative games

Andrzej Młodak (2007)

Applicationes Mathematicae

We prove new axiomatizations of the Shapley value and the Banzhaf value, defined on the class of nonnegative constant-sum games with nonzero worth of the grand coalition as well as on nonnegative bilateral games with nonzero worth of the grand coalition. A characteristic feature of the latter class of cooperative games is that for such a game any coalition and its complement in the set of all players have the same worth. The axiomatizations are then generalized to the entire class of constant-sum...

Some weak covering properties and infinite games

Masami Sakai (2014)

Open Mathematics

We show that (I) there is a Lindelöf space which is not weakly Menger, (II) there is a Menger space for which TWO does not have a winning strategy in the game Gfin(O,Do). These affirmatively answer questions posed in Babinkostova, Pansera and Scheepers [Babinkostova L., Pansera B.A., Scheepers M., Weak covering properties and infinite games, Topology Appl., 2012, 159(17), 3644–3657]. The result (I) automatically gives an affirmative answer of Wingers’ problem [Wingers L., Box products and Hurewicz...

Split of an Optimization Variable in Game Theory

R. Aboulaich, A. Habbal, N. Moussaid (2010)

Mathematical Modelling of Natural Phenomena

In the present paper, a general multiobjective optimization problem is stated as a Nash game. In the nonrestrictive case of two objectives, we address the problem of the splitting of the design variable between the two players. The so-called territory splitting problem is solved by means of an allocative approach. We propose two algorithms in order to find fair allocation tables

Spreading mechanisms of cooperation for the evolutionary Prisoner's Dilemma games

György Szabó (2008)

Banach Center Publications

We survey several mechanisms supporting the maintenance of cooperation for evolutionary Prisoner's Dilemma games. In these models players are located on the sites of a lattice or graph and they can follow one of the pure strategies: cooperation (C) or defection (D). Their total income comes from Prisoner's Dilemma games with their neighbors. We discuss the consequences of different evolutionary rules determining the time-dependence of the strategy distribution and compare the results of spreading...

Stationary and convergent strategies in Choquet games

François G. Dorais, Carl Mummert (2010)

Fundamenta Mathematicae

If Nonempty has a winning strategy against Empty in the Choquet game on a space, the space is said to be a Choquet space. Such a winning strategy allows Nonempty to consider the entire finite history of previous moves before making each new move; a stationary strategy only permits Nonempty to consider the previous move by Empty. We show that Nonempty has a stationary winning strategy for every second-countable T₁ Choquet space. More generally, Nonempty has a stationary winning strategy for...

Stochastic control optimal in the Kullback sense

Jan Šindelář, Igor Vajda, Miroslav Kárný (2008)

Kybernetika

The paper solves the problem of minimization of the Kullback divergence between a partially known and a completely known probability distribution. It considers two probability distributions of a random vector ( u 1 , x 1 , ... , u T , x T ) on a sample space of 2 T dimensions. One of the distributions is known, the other is known only partially. Namely, only the conditional probability distributions of x τ given u 1 , x 1 , ... , u τ - 1 , x τ - 1 , u τ are known for τ = 1 , ... , T . Our objective is to determine the remaining conditional probability distributions of u τ given u 1 , x 1 , ... , u τ - 1 , x τ - 1 such...

Currently displaying 41 – 60 of 81