Displaying 361 – 380 of 1536

Showing per page

Diophantine approximation on algebraic varieties

Michael Nakamaye (1999)

Journal de théorie des nombres de Bordeaux

We present an overview of recent advances in diophantine approximation. Beginning with Roth's theorem, we discuss the Mordell conjecture and then pass on to recent higher dimensional results due to Faltings-Wustholz and to Faltings respectively.

Diophantine approximation on Veech surfaces

Pascal Hubert, Thomas A. Schmidt (2012)

Bulletin de la Société Mathématique de France

We show that Y. Cheung’s general Z -continued fractions can be adapted to give approximation by saddle connection vectors for any compact translation surface. That is, we show the finiteness of his Minkowski constant for any compact translation surface. Furthermore, we show that for a Veech surface in standard form, each component of any saddle connection vector dominates its conjugates in an appropriate sense. The saddle connection continued fractions then allow one to recognize certain transcendental...

Diophantine approximation with partial sums of power series

Bruce C. Berndt, Sun Kim, M. Tip Phaovibul, Alexandru Zaharescu (2013)

Acta Arithmetica

We study the question: How often do partial sums of power series of functions coalesce with convergents of the (simple) continued fractions of the functions? Our theorems quantitatively demonstrate that the answer is: not very often. We conjecture that in most cases there are only a finite number of partial sums coinciding with convergents. In many of these cases, we offer exact numbers in our conjectures.

Diophantine Approximations of Infinite Series and Products

Ondřej Kolouch, Lukáš Novotný (2016)

Communications in Mathematics

This survey paper presents some old and new results in Diophantine approximations. Some of these results improve Erdos' results on~irrationality. The results in irrationality, transcendence and linear independence of infinite series and infinite products are put together with idea of irrational sequences and expressible sets.

Diophantine approximations with Fibonacci numbers

Victoria Zhuravleva (2013)

Journal de Théorie des Nombres de Bordeaux

Let F n be the n -th Fibonacci number. Put ϕ = 1 + 5 2 . We prove that the following inequalities hold for any real α :1) inf n | | F n α | | ϕ - 1 ϕ + 2 ,2) lim inf n | | F n α | | 1 5 ,3) lim inf n | | ϕ n α | | 1 5 .These results are the best possible.

Diophantine equations after Fermat’s last theorem

Samir Siksek (2009)

Journal de Théorie des Nombres de Bordeaux

These are expository notes that accompany my talk at the 25th Journées Arithmétiques, July 2–6, 2007, Edinburgh, Scotland. I aim to shed light on the following two questions:(i)Given a Diophantine equation, what information can be obtained by following the strategy of Wiles’ proof of Fermat’s Last Theorem?(ii)Is it useful to combine this approach with traditional approaches to Diophantine equations: Diophantine approximation, arithmetic geometry, ...?

Diophantine equations with linear recurrences An overview of some recent progress

Umberto Zannier (2005)

Journal de Théorie des Nombres de Bordeaux

We shall discuss some known problems concerning the arithmetic of linear recurrent sequences. After recalling briefly some longstanding questions and solutions concerning zeros, we shall focus on recent progress on the so-called “quotient problem” (resp. " d -th root problem"), which in short asks whether the integrality of the values of the quotient (resp. d -th root) of two (resp. one) linear recurrences implies that this quotient (resp. d -th root) is itself a recurrence. We shall also relate such...

Diophantine inequalities with power sums

Amedeo Scremin (2007)

Journal de Théorie des Nombres de Bordeaux

The ring of power sums is formed by complex functions on of the form α ( n ) = b 1 c 1 n + b 2 c 2 n + ... + b h c h n , for some b i ¯ and c i . Let F ( x , y ) ¯ [ x , y ] be absolutely irreducible, monic and of degree at least 2 in y . We consider Diophantine inequalities of the form | F ( α ( n ) , y ) | < | F y ( α ( n ) , y ) | · | α ( n ) | - ε and show that all the solutions ( n , y ) × have y parametrized by some power sums in a finite set. As a consequence, we prove that the equation F ( α ( n ) , y ) = f ( n ) , with f [ x ] not constant, F monic in y and α not constant, has only finitely many solutions.

Currently displaying 361 – 380 of 1536