We study the function , where θ is a positive real number, ⌊·⌋ and · are the floor and fractional part functions, respectively. Nathanson proved, among other properties of , that if log θ is rational, then for all but finitely many positive integers n, . We extend this by showing that, without any condition on θ, all but a zero-density set of integers n satisfy . Using a metric result of Schmidt, we show that almost all θ have asymptotically (log θ log x)/12 exceptional n ≤ x. Using continued...