Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields
Let be a global field of characteristic not 2. Let be a symmetric variety defined over and a finite set of places of . We obtain counting and equidistribution results for the S-integral points of . Our results are effective when is a number field.
Let be a fixed algebraic variety defined by polynomials in variables with integer coefficients. We show that there exists a constant such that for almost all primes for all but at most points on the reduction of modulo at least one of the components has a large multiplicative order. This generalises several previous results and is a step towards a conjecture of B. Poonen.
We give a family of elliptic curves, depending on two nonzero rational parameters and , such that the following statement holds: let be an elliptic curve and let be its 3-torsion subgroup. This group verifies if and only if belongs to .Furthermore, we consider the problem of the local-global divisibility by 9 for points of elliptic curves. The number 9 is one of the few exceptional powers of primes, for which an answer to the local-global divisibility is unknown in the case of such...
Let p be a prime number, p ≠ 2,3 and Fp the finite field with p elements. An elliptic curve E over Fp is a projective nonsingular curve of genus 1 defined over Fp. Each one of these curves has an isomorphic model given by an (Weierstrass) equation E: y2 = x3 + Ax + B, A,B ∈ Fp with D = 4A3 + 27B2 ≠ 0. The j-invariant of E is defined by j(E) = 1728·4A3/D.The aim of this note is to establish some results concerning the cardinality of the group of points on elliptic curves over Fp with j-invariants...