Displaying 761 – 780 of 1550

Showing per page

On a stratification of the moduli of K3 surfaces

Gerard van der Geer, T. Katsura (2000)

Journal of the European Mathematical Society

In this paper we give a characterization of the height of K3 surfaces in characteristic p > 0 . This enables us to calculate the cycle classes in families of K3 surfaces of the loci where the height is at least h . The formulas for such loci can be seen as generalizations of the famous formula of Deuring for the number of supersingular elliptic curves in characteristic p . In order to describe the tangent spaces to these loci we study the first cohomology of higher closed forms.

On a theorem of Tate

Fedor Bogomolov, Yuri Tschinkel (2008)

Open Mathematics

We study applications of divisibility properties of recurrence sequences to Tate’s theory of abelian varieties over finite fields.

On arithmetic progressions on Edwards curves

Enrique González-Jiménez (2015)

Acta Arithmetica

Let m > 0 and a,q ∈ ℚ. Denote by m ( a , q ) the set of rational numbers d such that a, a + q, ..., a + (m-1)q form an arithmetic progression in the Edwards curve E d : x ² + y ² = 1 + d x ² y ² . We study the set m ( a , q ) and we parametrize it by the rational points of an algebraic curve.

On component groups of Jacobians of Drinfeld modular curves

Mihran Papikian (2004)

Annales de l'Institut Fourier

Let J 0 ( 𝔫 ) be the Jacobian variety of the Drinfeld modular curve X 0 ( 𝔫 ) over 𝔽 q ( t ) , where 𝔫 is an ideal in 𝔽 q [ t ] . Let 0 B J 0 ( 𝔫 ) A 0 be an exact sequence of abelian varieties. Assume B , as a subvariety of J 0 ( 𝔫 ) , is stable under the action of the Hecke algebra 𝕋 End ( J 0 ( 𝔫 ) ) . We give a criterion which is sufficient for the exactness of the induced sequence of component groups 0 Φ B , Φ J , Φ A , 0 of the Néron models of these abelian varieties over 𝔽 q [ [ 1 t ] ] . This criterion is always satisfied when either A or B is one-dimensional. Moreover, we prove that the sequence...

Currently displaying 761 – 780 of 1550