Principe de Boyarsky et ...-modules.
This is a survey paper on the distribution of algebraic points on algebraic varieties.
Nous montrons dans la première partie l’existence d’un prolongement méromorphe à tout le plan complexe et explicitons les propriétés et quelques conséquences, d’une large classe de séries zêta des hauteurs associées à l’espace projectif
On généralise ici un théorème de Grauert-Manin pour les courbes (problème de Mordell pour les corps de fonctions). Soit un corps de fonctions algébriques sur un corps algébriquement clos de caractéristique 0, une variété propre et lisse sur , dont le fibré cotangent est ample; si l’ensemble de ses points rationnels est Zariski-dense, la variété se redescend sur .
On donne des propriétés de la catégorie tannakienne des modules de Dieudonné filtrés sur un corps -adique (ces modules de Dieudonné jouent en -adique un rôle analogue aux structures de Hodge complexes). On prouve l’existence d’un foncteur fibre sur et la simple connexité du groupe associé. Ceci permet de montrer, sous la conjecture de Fontaine : “faiblement admissible entraîne admissible”, une conjecture de Rapoport et Zink décrivant le torseur entre cohomologie cristalline et étale, et de prouver...
Chevalley’s theorem states that every smooth connected algebraic group over a perfect field is an extension of an abelian variety by a smooth connected affine group. That fails when the base field is not perfect. We define a pseudo-abelian variety over an arbitrary field to be a smooth connected -group in which every smooth connected affine normal -subgroup is trivial. This gives a new point of view on the classification of algebraic groups: every smooth connected group over a field is an extension...
Let be a field of characteristic . Let be a over (i.e., an -truncated Barsotti–Tate group over ). Let be a -scheme and let be a over . Let be the subscheme of which describes the locus where is locally for the fppf topology isomorphic to . If , we show that is pure in , i.e. the immersion is affine. For , we prove purity if satisfies a certain technical property depending only on its -torsion . For , we apply the developed techniques to show that all level ...