Displaying 101 – 120 of 153

Showing per page

An explicit algebraic family of genus-one curves violating the Hasse principle

Bjorn Poonen (2001)

Journal de théorie des nombres de Bordeaux

We prove that for any t 𝐐 , the curve 5 x 3 + 9 y 3 + 10 z 3 + 12 t 2 + 82 t 2 + 22 3 ( x + y + z ) 3 = 0 in 𝐏 2 is a genus 1 curve violating the Hasse principle. An explicit Weierstrass model for its jacobian E t is given. The Shafarevich-Tate group of each E t contains a subgroup isomorphic to 𝐙 / 3 × 𝐙 / 3 .

An iterative construction for ordinary and very special hyperelliptic curves

Francis J. Sullivan (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si costruiscono famiglie di curve iperellittiche col p —rango della varietà jacobiana uguale a zero. La costruzione sfrutta le proprietà elementari dell’operatore di Cartier e delle estensioni p -cicliche dei corpi con la caratteristica p maggiore di zero.

Arakelov computations in genus 3 curves

Jordi Guàrdia (2001)

Journal de théorie des nombres de Bordeaux

Arakelov invariants of arithmetic surfaces are well known for genus 1 and 2 ([4], [2]). In this note, we study the modular height and the Arakelov self-intersection for a family of curves of genus 3 with many automorphisms: C n : Y 4 = X 4 - ( 4 n - 2 ) X 2 Z 2 + Z 4 . Arakelov calculus involves both analytic and arithmetic computations. We express the periods of the curve C n in terms of elliptic integrals. The substitutions used in these integrals provide a splitting of the jacobian of C n as a product of three elliptic curves. Using the corresponding...

Currently displaying 101 – 120 of 153