Displaying 1241 – 1260 of 1551

Showing per page

Sur le groupe des classes d’un schéma arithmétique

Bruno Kahn (2006)

Bulletin de la Société Mathématique de France

Nous donnons une démonstration du fait que le groupe des classes d’un schéma irréductible de type fini sur Spec 𝐙 est de type fini. Cette preuve ne repose pas sur le théorème de Mordell-Weil-Néron, mais plutôt sur le théorème de Mordell-Weil classique, le théorème de Néron-Severi et les théorèmes de Hironaka et de Jong sur la résolution des singularités. Nous en déduisons quelques corollaires, parmi lesquels le théorème de Mordell-Weil-Néron lui-même.

Sur le rang des jacobiennes sur un corps de fonctions

Marc Hindry, Amílcar Pacheco (2005)

Bulletin de la Société Mathématique de France

Soit f : 𝒳 C une surface projective fibrée au-dessus d’une courbe et définie sur un corps de nombres k . Nous donnons une interprétation du rang du groupe de Mordell-Weil sur k ( C ) de la jacobienne de la fibre générique (modulo la partie constante) en termes de moyenne des traces de Frobenius sur les fibres de f . L’énoncé fournit une réinterprétation de la conjecture de Tate pour la surface 𝒳 et généralise des résultats de Nagao, Rosen-Silverman et Wazir.

Sur le théorème du produit

Gaël Rémond (2001)

Journal de théorie des nombres de Bordeaux

On donne des versions raffinées effectives du théorème du produit de G. Faltings et de son principal corollaire. Le théorème montre que si l’ensemble des zéros d’indice σ d’un polynôme multihomogène P a une composante commune avec l’ensemble des zéros d’indice σ + alors cette composante, sous-variété d’un produit d’espaces projectifs, est elle-même un produit à condition que les rapports des degrés de P soient grands en fonction de . Le corollaire le plus utile implique que, sous une condition plus...

Sur le Topos infinitésimal p -adique d’un schéma lisse I

Alberto Arabia, Zoghman Mebkhout (2010)

Annales de l’institut Fourier

Afin de disposer des opérations cohomologiques aussi souples que possible pour la cohomologie de de Rham p -adique, le but principal de ce mémoire est de résoudre intrinsèquement du point de vue cohomologique le problème des relèvements des schémas lisses et de leurs morphismes de la caractéristique p > 0 à la caractéristique nulle ce qui a été l’une des difficultés centrales de la théorie de la cohomologie de de Rham des schémas algébriques en caractéristique positive depuis le début. Nous montrons...

Sur les espaces de Stein quasi-compacts en géométrie rigide

Qing Liu (1989)

Journal de théorie des nombres de Bordeaux

On étudie les espaces de Stein quasi-compacts X (i.e. vérifiant H q ( X , ) = 0 pour tout q 1 et tout faisceau cohérent sur X ). On établit un critère simple pour qu’un espace soit de Stein et on en déduit quelques conséquences.

Sur l’indépendance de l en cohomologie l -adique sur les corps locaux

Weizhe Zheng (2009)

Annales scientifiques de l'École Normale Supérieure

Gabber a déduit son théorème d’indépendance de  l de la cohomologie d’intersection d’un résultat général de stabilité sur les corps finis. Dans cet article, nous démontrons un analogue sur les corps locaux de ce résultat général. Plus précisément, nous introduisons une notion d’indépendance de  l pour les systèmes de complexes de faisceaux l -adiques sur les schémas de type fini sur un corps local équivariants sous des groupes finis et nous établissons sa stabilité par les six opérations de Grothendieck...

Currently displaying 1241 – 1260 of 1551