Sur l'analyse indéterminée du troisième degré et sur la question 802 (Sylvester)
Nous donnons une démonstration du fait que le groupe des classes d’un schéma irréductible de type fini sur est de type fini. Cette preuve ne repose pas sur le théorème de Mordell-Weil-Néron, mais plutôt sur le théorème de Mordell-Weil classique, le théorème de Néron-Severi et les théorèmes de Hironaka et de Jong sur la résolution des singularités. Nous en déduisons quelques corollaires, parmi lesquels le théorème de Mordell-Weil-Néron lui-même.
Soit une surface projective fibrée au-dessus d’une courbe et définie sur un corps de nombres . Nous donnons une interprétation du rang du groupe de Mordell-Weil sur de la jacobienne de la fibre générique (modulo la partie constante) en termes de moyenne des traces de Frobenius sur les fibres de . L’énoncé fournit une réinterprétation de la conjecture de Tate pour la surface et généralise des résultats de Nagao, Rosen-Silverman et Wazir.
On donne des versions raffinées effectives du théorème du produit de G. Faltings et de son principal corollaire. Le théorème montre que si l’ensemble des zéros d’indice d’un polynôme multihomogène a une composante commune avec l’ensemble des zéros d’indice alors cette composante, sous-variété d’un produit d’espaces projectifs, est elle-même un produit à condition que les rapports des degrés de soient grands en fonction de . Le corollaire le plus utile implique que, sous une condition plus...
Afin de disposer des opérations cohomologiques aussi souples que possible pour la cohomologie de de Rham -adique, le but principal de ce mémoire est de résoudre intrinsèquement du point de vue cohomologique le problème des relèvements des schémas lisses et de leurs morphismes de la caractéristique à la caractéristique nulle ce qui a été l’une des difficultés centrales de la théorie de la cohomologie de de Rham des schémas algébriques en caractéristique positive depuis le début. Nous montrons...
On étudie les espaces de Stein quasi-compacts (i.e. vérifiant pour tout et tout faisceau cohérent sur ). On établit un critère simple pour qu’un espace soit de Stein et on en déduit quelques conséquences.
Gabber a déduit son théorème d’indépendance de de la cohomologie d’intersection d’un résultat général de stabilité sur les corps finis. Dans cet article, nous démontrons un analogue sur les corps locaux de ce résultat général. Plus précisément, nous introduisons une notion d’indépendance de pour les systèmes de complexes de faisceaux -adiques sur les schémas de type fini sur un corps local équivariants sous des groupes finis et nous établissons sa stabilité par les six opérations de Grothendieck...